A nonlinear oblique derivative boundary value problem for the heat equation. I: Basic results. (English) Zbl 0922.35072

The authors examine the following boundary value problem from plasma physics: \[ \begin{gathered} B_t - B_{XX} -B_{ZZ} =0\quad \text{ for }t>0,\;X>0,\;Z\in \mathbb R, \\ B_X-KBB_Z =0 \quad\text{ for } t>0,\;X=0,\;Z\in \mathbb R, \\ B(t,-\infty,X)=1,\;B(t,\infty,X)=0 \quad\text{for } t>0,\;X> 0, \end{gathered} \] where \(K\) is a given positive number. The interest in this paper is in self-similar solutions of the problem. Using the variables \(x=Z/(t+1)^{1/2}\), \(x=X/(t+1)^{1/2}\), these are functions \(U(x,z)\) such that \[ \begin{gathered} -U_{xx}- \tfrac 12 (zU_z +xU^x) =0 \quad\text{ for } x>0,\;z\in \mathbb R, \\ U_x-KUU_z=0 \quad\text{ for } x=0, z\in \mathbb R, \\ U(-\infty,x)=1,\;U(\infty,x)=0 \quad\text{ for } x>0. \end{gathered} \] By a series of a priori estimates, the authors show that there is a unique self-similar solution and then that the solution \(B\) of the original problem converges exponentially fast to this solution (as \(t\to\infty\)) provided \(B(0,z,x)\) converges to \(U(x,z)\) fast enough as \(x+| z| \to\infty\).


35K60 Nonlinear initial, boundary and initial-boundary value problems for linear parabolic equations
Full Text: DOI Numdam EuDML


[1] Agmon, S.; Douglis, A.; Nirenberg, L.; Agmon, S.; Douglis, A.; Nirenberg, L., Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions II, Comm. pure appl. math., Comm. pure appl. math., Vol. 17, 35-92, (1964) · Zbl 0123.28706
[2] Amann, H., Quasilinear parabolic systems under nonlinear boundary conditions, Arch. rat. mech. anal., Vol. 92, 153-191, (1986) · Zbl 0596.35061
[3] Amann, H., Parabolic evolution equations and nonlinear boundary conditions, J. diff. eq., Vol. 72, 201-269, (1988) · Zbl 0658.34011
[4] Berestycki, H.; Caffarelli, L.A.; Nirenberg, L., Uniform estimates for regularizations of free boundary problems, (), 567-617
[5] Brézis, H., Analyse fonctionnelle dans mathématiques appliquées pour la maîtrise, (1983), Masson
[6] Chuvatin, A., ()
[7] Dong, G., Initial and nonlinear oblique boundary value problems for fully nonlinear parabolic equations, J. partial diff. eq., Vol. 1, 12-42, (1988) · Zbl 0699.35152
[8] Gordeev, A.V.; Grechikha, A.V.; Kalda, Y.L., Rapid penetration of a magnetic field into a plasma along an electrode, Sov. J. plasma phys., Vol. 16, 1, (1990)
[9] Gordeev, A.V.; Kingsep, A.S.; Rudakov, L.I., Electron magnetohydrodynamics, Physics reports, Vol. 243, 5, (1994)
[10] Kingsep, A.S.; Chukbar, K.V.; Yan’kov, V.V., ()
[11] Ladyẑenskaja, O.A.; Solonnikov, V.A.; Ural’ceva, N.N., Linear and quasilinear equations of parabolic type, ()
[12] Ladyẑenskaja, O.A.; Ural’ceva, N.N., Équations aux dérivées partielles de type elliptique, () · Zbl 0164.13001
[13] Lieberman, G.; Trudinger, N., Nonlinear oblique boundary value problems for nonlinear elliptic equations, Trans. A.M.S., Vol. 295, 509-546, (1986) · Zbl 0619.35047
[14] {\scF. Méhats} and {\scJ.-M. Roquejoffre}, A nonlinear oblique derivative boundary value problem for the heat equation, Part II: rapid penetration at the boundary, to appear.
[15] Nazarov, A.I.; Ural’tseva, N.N., A problem with an oblique derivative for a quasilinear parabolic equation, Zap. nauch. sem. S-peterburg otdel. mat. inst., Vol. 200, (1992), Steklov (POMI) · Zbl 0827.35061
[16] Sattinger, D.H., Monotone methods in nonlinear elliptic and parabolic boundary value problems, Indiana university mathematics journal, Vol. 21, n^{o} 11, 979-1000, (1972) · Zbl 0223.35038
[17] Trudinger, N., On Harnack type inequalities and their applications to quasilinear problems, Comm. pure appl. math., Vol. 20, 721-747, (1967) · Zbl 0153.42703
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.