Omel’yanov, G. A.; Trushkov, V. V. A geometric correction in the problem on the motion of a free boundary. (English. Russian original) Zbl 0922.35191 Math. Notes 63, No. 1, 137-139 (1998); translation from Mat. Zametki 63, No. 1, 151-153 (1998). We consturct a correction to the asymptotic solution of the following system of phase field equations [G. Caginalp, Arch. Ration. Mech. Anal. 92, 205-245 (1986; Zbl 0608.35080)]: \[ \partial_t(\theta+ \varphi)=\Delta\theta,\quad t\in(0,T),\quad x\in\Omega,\quad \varepsilon^2\partial_t\varphi= \varepsilon^2\Delta\varphi+ \varphi- \varphi^3+ \varepsilon\kappa\theta, \]\[ \theta|_\Sigma= g(x,t)|_\Sigma,\quad \varphi|_\Sigma= 1,\quad \theta|_{t=0}= \theta_0(x,\varepsilon),\quad \varphi|_{t= 0}= \varphi_0(x,\varepsilon). \] Here \(\Sigma= \partial\Omega\times (0,T)\), \(\Omega\) is a domain in \(\mathbb{R}^n\) with smooth \((C^\infty)\) boundary, \(\varepsilon\) is a small parameter, \(\kappa>0\) is a constant, and \(\partial_t= \partial/\partial t\). Cited in 1 Document MSC: 35R35 Free boundary problems for PDEs 35Q72 Other PDE from mechanics (MSC2000) 80A22 Stefan problems, phase changes, etc. Keywords:self-similar asymptotic solutions of kink type; mean curvature; Gibbs-Thomson condition; asymptotic solution; phase field equations Citations:Zbl 0608.35080 × Cite Format Result Cite Review PDF Full Text: DOI References: [1] G. Caginalp,Arch. Rational Mech. Anal.,92, 205–245 (1986). · Zbl 0608.35080 · doi:10.1007/BF00254827 [2] V. G. Danilov, G. A. Omel’yanov, and E. V. Radkevich,Differentsial’nye Uravneniya [Differential Equations],31, No. 3, 483–491 (1995). [3] V. P. Maslov and G. A. Omel’yanov,Uspekhi Mat. Nauk [Russian Math. Surveys],36, No. 3, 63–126 (1981). [4] V. P. Maslov, V. G. Danilov, and K. A. Volosov,Mathematical Modeling of Mass and Heat Transfer Processes [in Russian], Nauka, Moscow (1987). · Zbl 0645.73049 [5] A. A. Lacey and A. B. Taylor,IMA J. Appl. Math.,30, 303–314 (1983). · Zbl 0531.35076 · doi:10.1093/imamat/30.3.303 [6] V. G. Danilov, G. A. Omel’yanov, and E. V. Radkevich,Free Boundary Problem News,6, 27–28 (1995). This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.