zbMATH — the first resource for mathematics

Multivalued perturbations of \(m\)-accretive differential inclusions. (English) Zbl 0922.47048
Summary: Given an \(m\)-accretive operator \(A\) in a Banach space \(X\) and an upper semicontinuous multivalued map \(F:[0,a]\times X\to 2^X\), we consider the initial value problem \[ u'\in -Au+ F(t,u)\quad\text{on }[0,a],\quad u(0)= x_0. \] We concentrate on the case when the semigroup generated by \(-A\) is only equicontinuous and obtain existence of integral solutions if, in particular, \(X^*\) is uniformly convex and \(F\) satisfies \[ \beta(F(t, B))\leq k(t)\beta(B)\quad\text{for all bounded }B\subset X, \] where \(k\in L^1([0,a])\) and \(\beta\) denotes the Hausdorff-measure of noncompactness. Moreover, we show that the set of all solutions is a compact \(R_\delta\)-set in this situation. In general, the extra condition on \(X^*\) is essential as we show by an example in which \(X\) is not uniformly smooth and the set of all solutions is not compact, but it can be omitted if \(A\) is single-valued and continuous or – \(A\) generates a \(C_0\)-semigroup of bounded linear operators.
In the simpler case when – \(A\) generates a compact semigroup, we give a short proof of existence of solutions, again if \(X^*\) is uniformly (or strictly) convex. In this situation, we also provide a counterexample in \(\mathbb{R}^4\) in which no integral solution exists.

47H06 Nonlinear accretive operators, dissipative operators, etc.
47E05 General theory of ordinary differential operators (should also be assigned at least one other classification number in Section 47-XX)
47D06 One-parameter semigroups and linear evolution equations
Full Text: DOI
[1] H. Attouch and A. Damlamian,On multivalued evolution equations in Hilbert spaces, Israel Journal of Mathematics12 (1972), 373–390. · Zbl 0243.35080 · doi:10.1007/BF02764629
[2] P. Baras,Compacité de l’opérateur f solution d’une équation non linéaire (du/dt)+Au, Comptes Rendus de l’Académie des Sciences, Paris286 (1978), 1113–1116.
[3] V. Barbu,Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff, Leyden, 1976. · Zbl 0328.47035
[4] Ph. Benilan, M. G. Crandall and A. Pazy,Nonlinear Evolution Equations in Banach Spaces, monograph in preparation.
[5] D. Bothe,Upper semicontinuous perturbations of m-accretive operators and differential inclusions with dissipative right-hand side, inTopology in Nonlinear Analysis (K. Geba and L. Górniewicz, eds.), Banach Center Publications35, 1996, pp. 139–148. · Zbl 0882.47028
[6] D. Bothe,Flow invariance for perturbed nonlinear evolution equations, Abstract and Applied Analysis1 (1996), 417–433. · Zbl 0954.34054 · doi:10.1155/S1085337596000231
[7] D. Bothe,Reaction-diffusion systems with discontinuities. A viability approach, Proceedings of the Second World Congress of Nonlinear Analysts, Nonlinear Analysis30 (1997), 677–686. · Zbl 0892.35074
[8] A. Bressan and V. Staicu,On nonconvex perturbations of maximal monotone differential inclusions, Setvalued Analysis2 (1994), 415–437. · Zbl 0820.47072
[9] H. Brezis,Operateurs Maximaux Monotones, North-Holland, Amsterdam, 1973.
[10] H. Brezis,New results concerning monotone operators and nonlinear semigroups, inAnalysis of Nonlinear Problems, RIMS, 1974, pp. 2–27.
[11] A. Cellina and M. V. Marchi,Non-convex perturbations of maximal monotone differential inclusions, Israel Journal of Mathematics46 (1983), 1–11. · Zbl 0542.47036 · doi:10.1007/BF02760619
[12] G. Colombo, A. Fonda and A. Ornelas,Lower semicontinuous perturbations of maximal monotone differential inclusions, Israel Journal of Mathematics61 (1988), 211–218. · Zbl 0661.47038 · doi:10.1007/BF02766211
[13] M. G. Crandall and T. M. Liggett,Generation of semi-groups of nonlinear transformations on general Banach spaces, American Journal of Mathematics93 (1971), 265–298. · Zbl 0226.47038 · doi:10.2307/2373376
[14] K. Deimling,Nonlinear Functional Analysis, Springer-Verlag, Berlin, 1985. · Zbl 0559.47040
[15] K. Deimling,Multivalued Differential Equations, de Gruyter, Berlin, 1992.
[16] J. Diestel,Geometry of Banach Spaces–Selected Topics, Lecture Notes in Mathematics485, Springer-Verlag, Berlin, 1975. · Zbl 0307.46009
[17] J. Diestel, W. M. Ruess and W. Schachermayer,Weak compactness in L 1 \(\mu\),X), Proceedings of the American Mathematical Society118 (1993), 447–453.
[18] L. Górniewicz, A. Granas and W. Kryszewski,Sur la méthode de l’homotopie dans la théorie des point fixes pour les applications multivoques. Partie 2: L’indice dans les ANRs compactes, Comptes Rendus de l’Académie des Sciences, Paris308 (1989), 449–452. · Zbl 0678.54033
[19] S. Gutman,Evolutions governed by m-accretive plus compact operators, Nonlinear Analysis7 (1983), 707–715. · Zbl 0518.34055 · doi:10.1016/0362-546X(83)90027-5
[20] D. M. Hyman,On decreasing sequences of compact absolute retracts, Fundamenta Mathematicae64 (1969), 91–97. · Zbl 0174.25804
[21] E. Mitidieri and I. I. Vrabie,Differential inclusions governed by non convex perturbations of m-accretive operators, Differential and Integral Equations2 (1989), 525–531. · Zbl 0736.34014
[22] V. V. Obukhovskij,Semilinear functional-differential inclusions in a Banach space and controlled parabolic systems, Soviet Journal of Automation and Information Sciences24 (1991), 71–79. · Zbl 0791.93049
[23] A. Pazy,Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, Berlin, 1983. · Zbl 0516.47023
[24] S. Schmidt,Existenzsätze für gewöhnliche Differentialgleichungen in Banachräumen, Funkcialaj Ekvacioj35 (1992), 199–222. · Zbl 0785.34045
[25] A. A. Tolstonogov,Properties of integral solutions of differential inclusions with m-accretive operators, Mathematical Notes49 (1991), 636–644. · Zbl 0734.34020
[26] A. A. Tolstonogov and Y. I. Umanskii,Solutions of evolution inclusions II, Siberian Mathematical Journal33 (1992), 693–702. · Zbl 0791.34016 · doi:10.1007/BF00971135
[27] P. Volkmann,Ein Existenzsatz für gewöhnliche Differentialgleichungen in Banachräumen, Proceedings of the American Mathematical Society80 (1980), 297–300. · Zbl 0506.34051
[28] I. I. Vrabie,Compactness Methods for Nonlinear Evolutions, Pitman, London, 1987. · Zbl 0721.47050
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.