zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Partial surface matching by using directed footprints. (English) Zbl 0922.68109
Summary: We present a new technique for partial surface and volume matching of images in three dimensions. In this problem, we are given two objects in 3-space, each represented as a set of points, scattered uniformly along its boundary or inside its volume. The goal is to find a rigid motion of one object which makes a sufficiently large portion of its boundary lying sufficiently close to a corresponding portion of the boundary of the second object. This is an important problem in pattern recognition and in computer vision, with many industrial, medical, and chemical applications. Our algorithm is based on assigning a directed footprint to every point of the two sets, and locating all the pairs of points (one of each set) whose undirected components of the footprints are sufficiently similar. The algorithm then computes for each such pair of points all the rigid transformations that map the first point to the second, while making the respective direction components of their footprints coincide. A voting scheme is employed for computing transformations which map significantly large number of points of the first set to points of the second set. Experimental results on various examples are presented and show the accurate and robust performance of our algorithm.
68T10Pattern recognition, speech recognition
68U10Image processing (computing aspects)
Full Text: DOI