×

Partial differential equations: theory and numerical solution. Proceedings of the ICM’98 satellite conference, Prague, Czech Republic, August 10–16, 1998. (English) Zbl 0923.00019

Chapman & Hall/CRC Research Notes in Mathematics. 406. Boca Raton, FL: Chapman & Hall/CRC. 349 p. (2000).

Show indexed articles as search result.

The articles of this volume will be reviewed individually.
Indexed articles:
Arkhipova, A. A., On the global in time solvability of the Cauchy-Dirichlet problem to nondiagonal parabolic systems with quadratic nonlinearities, 1-9 [Zbl 0931.35065]
Bendali, A., Boundary element solution of scattering problems relative to a generalized impedance boundary condition, 10-24 [Zbl 0937.78015]
Beneš, M., Mathematical analysis of phase-field equations with gradient coupling term, 25-33 [Zbl 0934.35210]
Berestycki, H., Qualitative properties of positive solutions of elliptic equations, 34-44 [Zbl 0947.35065]
Bey, R.; Lohéac, J.-P.; Moussaoui, M., Nonlinear boundary stabilization of the wave equation, 45-48 [Zbl 0931.35087]
Boisgérault, S.; Zolésio, J.-P., Shape derivative of sharp functionals governed by Navier-Stokes flow, 49-63 [Zbl 0937.35130]
Cagnol, J.; Zolésio, J.-P., Second-order shape derivative for hyperbolic PDEs, 64-73 [Zbl 0938.35087]
Cao, F.; Caselles, V.; Morel, J.-M.; Sbert, C., An axiomatic approach to image interpolation, 74-88 [Zbl 0932.35101]
Carmona, José, A class of strong resonant problems via Lyapunov-Schmidt reduction method, 89-98 [Zbl 0938.35061]
Cioranescu, D.; Girault, V.; Glowinski, R.; Scott, L. R., Some theoretical and numerical aspects of grade-two fluid models, 99-110 [Zbl 0935.35118]
Da Prato, Giuseppe, Large asymptotic behaviour of Kolmogorov equations in Hilbert spaces, 111-120 [Zbl 0946.47027]
Frehse, J.; Málek, J.; Steinhauer, M., On existence results for fluids with shear dependent viscosity. – Unsteady flows, 121-129 [Zbl 0935.35026]
Gallay, Th.; Raugel, G., Stability of propagating fronts in damped hyperbolic equations, 130-146 [Zbl 0931.35103]
Hagen, T.; Renardy, M., On the equations of melt-spinning in viscous flow, 147-157 [Zbl 0935.35095]
Hünlich, R.; Glitzky, A., On energy estimates for electro-diffusion equations arising in semiconductor technology, 158-174 [Zbl 0931.35016]
Jäger, W.; Mikelić, A., On the boundary conditions at the contact interface between two porous media, 175-186 [Zbl 0934.35135]
Jochmann, F., On the semistatic limit for Maxwell’s equations, 187-198 [Zbl 0931.35009]
Kačur, J., Application of relaxation schemes and method of characteristics to degenerate convection-diffusion problems, 199-213 [Zbl 0933.35109]
Kawohl, B., Symmetrization – or how to prove symmetry of solutions to a PDE, 214-229 [Zbl 0933.35013]
Knobloch, P.; Tobiska, L., A bubble-type stabilization of the \(Q_1/Q_1\)-element for incompressible flows, 230-239 [Zbl 0944.76036]
Koch, Herbert, Instability for incompressible and inviscid fluids, 240-247 [Zbl 0934.35136]
Lavrentiev, Mikhail jun.; Spigler, R., The Kuramoto-Sakaguchi nonlinear parabolic integrodifferential equation, 248-253 [Zbl 0931.35078]
Meister, E.; Passow, A., Scattering of acoustical and electromagnetic waves by some canonical obstacles, 254-272 [Zbl 0934.35187]
Moisan, L., PDEs, motion analysis and 3D reconstruction from movies, 273-282 [Zbl 0933.35006]
Pokorný, M., Steady flow of viscoelastic fluid past an obstacle – Asymptotic behaviour of solutions, 283-289 [Zbl 0934.35138]
Raitums, U., Properties of optimal control problems for elliptic equations, 290-297 [Zbl 0942.49006]
Sanfelici, S., On the Galerkin method for semilinear parabolic-ordinary systems, 298-308 [Zbl 0932.65107]
Schweizer, B., Modelling the dynamic contact angle, 309-311 [Zbl 0934.35214]
Serre, D., \(L^1\)-decay and the stability of shock profiles, 312-321 [Zbl 0938.35098]
Tadie, On positive solutions of the equation \(\Delta U + f(|x|)U^p=0\) in \(\mathbb{R}^n,\quad n>2\), 322-328 [Zbl 0931.35057]
Velázquez, J. J. L., Singularity formation for the Stefan problem, 329-335 [Zbl 0935.35184]
Wei, J., On the construction of interior spike layer solutions to a singularly perturbed semilinear Neumann problem, 336-349 [Zbl 0931.35018]

MSC:

00B25 Proceedings of conferences of miscellaneous specific interest
35-06 Proceedings, conferences, collections, etc. pertaining to partial differential equations
65-06 Proceedings, conferences, collections, etc. pertaining to numerical analysis
PDF BibTeX XML Cite