×

zbMATH — the first resource for mathematics

Lubrication approximation with prescribed nonzero contact angle. (English) Zbl 0923.35211
Using energy estimates and variational methods, the author proves the long-time existence of a weak solution \(s(t,x)\geq 0\) of the equation \(\partial_ts+ \partial_x(s\partial^3_x s)= 0\) in \(\{s>0\}\), \((\partial_x s)^2= 1\) on \(\partial\{s>0\}\). The equation is a lubrication approximation for the surface tension driven, single phase Hele-Shaw problem with a prescribed contact angle (here \(\pi/4\)).
Reviewer: O.Titow (Berlin)

MSC:
35R35 Free boundary problems for PDEs
35K65 Degenerate parabolic equations
76D08 Lubrication theory
76D45 Capillarity (surface tension) for incompressible viscous fluids
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1063/1.869102 · Zbl 1023.76522
[2] Alt H. -W., J. Reine Angewandte Math. , U 325 pp 105– (1981)
[3] Bensimon D., Rev. Mod. Phys. 3 pp 977– (1996)
[4] DOI: 10.1007/BF00379920 · Zbl 0827.35065
[5] F. Remis. Viscous flow, fourth order nonlinrat. degenerate equations and singular elliptic problems, in: Free boundary pt.oblvms: theory and applications (J. I. Diaq M. A. Herrero, A. Linan.J. L. vazques eds.), Pitman Research Notes in Mathematics 323, Longman. Harlow (1995). 40 56.
[6] F. Bernis. Integral inequalities with applications to nonlinear degenerate parabolic equations, in: Nonlinear boundary value problems (T. S. Angell, L. P. Cook, R. E. Kleinman, W. E. Olmstead. eds.), Volume in Honor of I. Stakgold, SIAM, Philadelphia (1996), 1 - 9. · Zbl 0889.35054
[7] Rernis F., I. Dzff. Equations, 83 pp 179– (1990)
[8] DOI: 10.1002/(SICI)1097-0312(199602)49:2<85::AID-CPA1>3.0.CO;2-2 · Zbl 0863.76017
[9] DOI: 10.1002/cpa.3160440402 · Zbl 0738.46011
[10] L.A. Caffarelli, Allocation maps with general cost functions, in Partial diflerential equations and applications, P. Marcellini, G. G. Talent’i, and E. Tesintini, eds., Lecture Notes in Pure and Applied Mathematics, 177, hrarcel Dekker, Inc., Kew York, (1996), 29-35. · Zbl 0883.49030
[11] DOI: 10.1103/PhysRevE.47.4169
[12] DOI: 10.1103/PhysRevE.47.4169
[13] DOI: 10.1017/S0022112091000721
[14] DOI: 10.1137/S0036141094267662 · Zbl 0856.35071
[15] L. Evans, Weak convergence methods for nonlinear partial differential equations. Conference Board of the Mathematical Sciences. Vol. 74 (1990).
[16] DOI: 10.1007/BF00387715 · Zbl 0828.57021
[17] DOI: 10.1007/BF02392620 · Zbl 0887.49017
[18] DOI: 10.1103/PhysRevLett.70.3043
[19] DOI: 10.1307/mmj/1029003026 · Zbl 0582.60002
[20] DOI: 10.4171/ZAA/639 · Zbl 0835.35061
[21] DOI: 10.1137/S0036141096303359 · Zbl 0915.35120
[22] Luckhaus S., EJAM 1 pp 101– (1990)
[23] DOI: 10.1007/s002050050073 · Zbl 0905.35068
[24] Rachev S. T., Probability metrics and the stability of stochastic models (1991) · Zbl 0744.60004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.