Matula, Przemysław Probability and moment bounds for sums of negatively associated random variables. (English. Ukrainian original) Zbl 0923.60024 Theory Probab. Math. Stat. 55, 135-141 (1997); translation from Teor. Jmovirn. Mat. Stat. 55, 130-135 (1996). Let \(S_n=\sum_{i=1}^n x_i\), where \(x_i\), \(i\geq 1\), are negatively associated (NA) random variables. A number of Fuk-Nagaev type upper bounds for tail probabilities \(P(S_n\geq x)\) and moments \(E| S_n| ^p\) are obtained. For instance, if \(Ex_k=0\), \(E| x_k| ^p<\infty \) for all \(k\geq 1\) and some \(p>2\), then \(| S_n| ^p\leq c(\sum_{i=1}^n E| x_i| ^p+(\sum_{i=1}^n Ex_i^2)^{p/2}))\). Such inequalities are used to investigate the asymptotic behaviour of empirical distribution functions based on a sequence of identically distributed NA random variables. Reviewer: N.M.Zinchenko (Kyïv) Cited in 1 Document MSC: 60E15 Inequalities; stochastic orderings 60F10 Large deviations Keywords:negative association; covariance; tail probability; moment bound; empirical distribution function PDFBibTeX XMLCite \textit{P. Matula}, Teor. Ĭmovirn. Mat. Stat. 55, 130--135 (1996; Zbl 0923.60024); translation from Teor. Jmovirn. Mat. Stat. 55, 130--135 (1996)