Yurachkivs’kyj, A. P. Limit theorems for measures of sections of random sets. (English. Ukrainian original) Zbl 0923.60054 Theory Probab. Math. Stat. 56, 183-188 (1998); translation from Teor. Jmovirn. Mat. Stat. 56, 177-182 (1997). A collection of random sets \(\Gamma_{ni}(\omega)=\{x:\chi_{ni} (x,\omega)=1\}\) is considered. The stochastic process \(\xi_n(t)\) which is conditional expectation of the product \(\prod_{i=1}^{[nt]}(1-\chi_{ni})\) is studied. The author proves weak convergence \(\xi_n \to e^{-Q}\) (a.s.), where \(Q\) is a continuous and increasing process. Some corollaries for expectations are obtained. Reviewer: A.Ya.Olenko (Kyïv) MSC: 60G57 Random measures 60D05 Geometric probability and stochastic geometry 60F17 Functional limit theorems; invariance principles Keywords:limit theorems; measures; random sets PDFBibTeX XMLCite \textit{A. P. Yurachkivs'kyj}, Teor. Ĭmovirn. Mat. Stat. 56, 177--182 (1997; Zbl 0923.60054); translation from Teor. Jmovirn. Mat. Stat. 56, 177--182 (1997)