zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Difference schemes for solving the generalized nonlinear Schrödinger equation. (English) Zbl 0923.65059
The authors study different finite difference schemes for solving the generalized nonlinear Schrödinger (GNLS) equation $$ iu_t - u_x u + q(| u| ^2) u = f(x,t)u. $$ A new linearized Crank-Nicolson-type scheme is presented by applying an extrapolation technique to the real coefficients of the nonlinear terms in the GNLS equations. Three particular model situations with $$ q(s) = s^2, \qquad q(s) = \ln(1+s), \qquad q(s) = -4s/(1+s) $$ are studied. The authors present results of numerical experiments, where the proposed scheme is compared with other Crank-Nicolson-type schemes, Hopscotch-type schemes, split step Fourier schemes, and with spectral schemes. The numerical experiments presented at the end of the paper demonstrate the efficiency and robustness of the proposed linearized Crank-Nicolson scheme for solving GNLS equations.

65M06Finite difference methods (IVP of PDE)
35Q55NLS-like (nonlinear Schrödinger) equations
Full Text: DOI
[1] Blalynickl-Birdla, I.; Mycielski, J.: Gaussons: solutions of the logarithmic Schrödinger equation. Phys. scripta 20, 539 (1979)
[2] Bullough, R. T.; Jack, P. M.; Kitchenside, P. W.; Saunders, R.: Solutions in laser physics. Phys. scripta 20, 364 (1979) · Zbl 1063.78526
[3] Chang, Q.: Conservative difference scheme for generalized nonlinear Schrödinger equations. Sci. sinica ser. A 26, 687 (1983)
[4] Chang, Q.; Wang, G.: Multigrid and adaptive algorithm for solving the nonlinear Schrödinger equations. J. comput. Phys. 88, 362 (1990) · Zbl 0708.65111
[5] Chang, Q.; Xu, L.: A numerical method for a system of generalized nonlinear Schrödinger equations. J. comput. Math. 4, 191 (1986) · Zbl 0599.65085
[6] Cowan, S.; Enns, R. H.; Rangnekar, S. S.; Sanghera, S. S.: Quasi-soliton and other behaviour of the nonlinear cubic-quintic Schrödinger equation. Canad. J. Phys. 64, 311 (1986)
[7] Konno, K.; Suzuki, H.: Self-focussing of laser beams in nonlinear media. Phys. scripta 20, 382 (1979)
[8] Pathria, D.; Morris, J. L.: Pseudo-spectral solution of nonlinear Schrödinger equations. J. comput. Phys. 87, 108 (1990) · Zbl 0691.65090
[9] Strauss, W.: Mathematical aspects of classical nonlinear field equations. Lect. notes phys. 98, 123 (1979) · Zbl 0416.35064
[10] Sulem, C.; Sulem, P. L.; Patera, A.: Numerical simulation of singular solutions to the two-dimensional cubic Schrödinger equation. Comm. pure appl. Math. 37, 755 (1984) · Zbl 0543.65081
[11] Taha, T. R.; Ablowitz, M. J.: Analytical and numerical aspects of certain nonlinear evolution equations. II. numerical, nonlinear Schrödinger equation. J. comput. Phys. 55, 203 (1984) · Zbl 0541.65082
[12] Fornberg, B.; Whitham, G. B.: Philos. trans. Roy. soc.. 289, 373 (1978)
[13] Pathria, D.; Morris, J. L.: Exact solutions for generalized nonlinear Schrödinger equation. Phys. scripta 39, 673 (1989)