zbMATH — the first resource for mathematics

Existence of approximate solutions and error bounds for viscoelastic fluid flow: Characteristics method. (English) Zbl 0923.76098
Summary: In this paper we study a finite element approximation of a steady viscoelastic fluid flow obeying an Oldroyd B type constitutive law. The approximate stress, velocity, and pressure are, respectively, \(P_1\) discontinuous, \(P_2\) continuous, \(P_1\) continuous. We use the method of characteristics for the convection of the extra stress tensor. We suppose that the continuous problem admits a sufficiently smooth and sufficiently small solution. We show by a fixed point method that the approximate problem has a solution and an error bound is given.

76M10 Finite element methods applied to problems in fluid mechanics
76A10 Viscoelastic fluids
Full Text: DOI
[1] Baranger, J.; Sandri, D., Finite element approximation of viscoelastic fluid flow existence of solutions and error bounds. I—discontinuous contraints, Numer. math., 63, 13-27, (1992) · Zbl 0761.76032
[2] Bermudez, A.; Durany, J., La méthode des caractéristiques pour LES problèmes de convection—diffusion stationnaires, M^2 an, 21, 1, 7-26, (1987) · Zbl 0613.65121
[3] Ciarlet, P.G., The finite element method for elliptic problems, (1978), North Holland Amsterdam · Zbl 0445.73043
[4] Fortin, M.; Fortin, A., Une note sur LES méthodes de caractéristiques et de lesaint—raviart pour LES problèmes hyperboliques stationnaires, M^2 an, 23, 4, 593-596, (1989) · Zbl 0687.65088
[5] Girault, V.; Raviart, P.A., Finite element method for Navier Stokes equations, (1986), Theory and Algorithms Springer Berlin, Heidelberg, New York · Zbl 0396.65070
[6] Chorin, A.J.; Marsden, I.E.; Hughes, T.J.R., A mathematical introduction to fluid mechanics, (1984), Springer-Verlag New York, Berlin, Heidelberg, Tokyo
[7] Pironneau, O., On the transport-diffusion algorithm and its applications to the Navier-Stokes equations, Numer. math., 38, 309, (1982) · Zbl 0505.76100
[8] Sandri, D., Remarques sur une formulation à trois champs du problème de Stokes, RAIRO modeé, math. anal. numér., 27, 817-841, (1993) · Zbl 0791.76008
[9] Keunings, R., On the high weissenberg number problem, J. non-Newtonian fluid mech., 20, 209-226, (1986) · Zbl 0589.76021
[10] Marchai, J.M.; Crochet, M.J., A new finite element for calculating viscoelastic flow, J. non-Newtonian fluid mech., 26, 449-451, (1987)
[11] Fortin, M.; Fortin, A., A new finite approach for the F.E.M. simulation of viscoelastic flows, J. non-Newtonian fluid mech., 32, 295-310, (1989) · Zbl 0672.76010
[12] Fortin, M.; Esslaoui, D., A finite element procedure for viscoelastic flows, Int. J. numer. method, 7, (1987) · Zbl 0634.76007
[13] Basombrio, F.G., Flows in viscoelastic fluids treated by the method of characteristics, J. non-Newtonian fluid mech., 39, 17-34, (1991) · Zbl 0718.76015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.