Carmona, Philippe; Petit, Frédérique; Yor, Marc Beta variables as times spent in \([0, \infty[\) by certain perturbed Brownian motions. (English) Zbl 0924.60067 J. Lond. Math. Soc., II. Ser. 58, No. 1, 239-256 (1998). We show that the time spent in \([0, +\infty)\) by certain processes \(Y\) which are defined by perturbations of Brownian motion involving reflection at maxima and minima, are beta distributed. This result relies heavily on Ray-Knight theorems for such perturbed Brownian motions. Reviewer: F.Petit (Paris VI) Cited in 26 Documents MSC: 60J60 Diffusion processes 60J99 Markov processes Keywords:perturbations of Brownian motion; Ray-Knight theorems × Cite Format Result Cite Review PDF Full Text: DOI