×

On the convergence of a discrete Kirchhoff triangle method valid for shells of arbitrary shape. (English) Zbl 0924.73214


MSC:

74S05 Finite element methods applied to problems in solid mechanics
74K15 Membranes

Keywords:

error estimates
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Mindlin, R.D., Influence of rotatory inertia and shear on flexural motions of isotropic elastic plates, J. appl. mech., 37, 1031-1036, (1951) · Zbl 0044.40101
[2] Reissner, E., The effects of transverse shear deformation on the bending of elastic plates, J. appl. mech. ASME, 12, 69-77, (1946)
[3] Wempner, G.; Oden, J.T.; Kross, D.A., Finite element analysis of thin shells, J. engrg. mech. div. ASCE, 94, 1273-1294, (1968)
[4] Stricklin, J.A.; Haisler, W.E.; Tisdale, P.R.; Gunderson, R.A., A rapidly converging triangular plate element, Aiaa j., 7, 180-181, (1969) · Zbl 0175.22703
[5] Dhatt, G.S., An efficient triangular shell element, Aiaa j., 8, 2100-2102, (1970)
[6] Batoz, J.L.; Bathe, K.J.; Ho, L.W., A study of three-node triangular plate bending elements, Internat. J. numer. methods engrg., 15, 1771-1812, (1980) · Zbl 0463.73071
[7] Batoz, J.L.; Tahar, M.Ben, Evaluation of a new quadrilateral thin plate bending element, Internat. J. numer. methods engrg., 18, 1655-1677, (1982) · Zbl 0489.73080
[8] Batoz, J.L.; Geoffroy, P., Evaluation d’un élément fini triangulaire pour l’analyse non linéaire statique de coques minces, ()
[9] Kikuchi, F., On a finite element scheme based on the discrete Kirchhoff assumption, Numer. math., 24, 211-231, (1975) · Zbl 0295.73067
[10] Kikuchi, F., On the discrete Kirchhoff approach for plate bending problems, () · Zbl 0559.73076
[11] Bernadou, M.; Eiroa, P.Mato, Approximation de problèmes linéaires de coques minces par une méthode d’éléments finis de type DKT, Rapports de recherche INRIA no. 699, (1987)
[12] Bernadou, M.; Eiroa, P.Mato; Trouvé, P., A general DKT method for linear thin shells of arbitrary shape, (), 333-357, New York · Zbl 0718.73078
[13] Koiter, W.T., On the nonlinear theory of thin elastic shells, (), 1-54 · Zbl 0213.27002
[14] Koiter, W.T., On the foundations of the linear theory of thin elastic shells, (), 169-195 · Zbl 0213.27002
[15] Naghdi, P.M., Foundations of elastic shell theory, (), 1-90
[16] Naghdi, P.M., The theory of shells and plates, (), 425-640, VI a-2 · Zbl 0807.73001
[17] Bernadou, M.; Boisserie, J.M., The finite element method for thin shell problems, () · Zbl 0451.73083
[18] Mato-Eiroa, P., Analisis numerico de un metodo de elementos finitos de tipo DKT para problemas lineales de laminas delgadas, ()
[19] Wempner, G., Mechanics of solids with applications to thin bodies, (1981), Sijthoff and Noordhoff, Alphen aan den Rijn The Netherlands · Zbl 0498.73006
[20] M. Bernadou, P.G. Ciarlet and B. Miara, Existence theorems for two-dimensional linear shell theories, J. Elasticity (to appear). · Zbl 0808.73045
[21] Coutris, N., Théorème d’existence et d’unicité pour un problème de flexion élastique de coques dans le cadre de la modélisation de P.M. naghdi, C.R. acad. sci. Paris, Sér., A 283, 951-953, (1976) · Zbl 0355.73011
[22] Kirchhoff, G., Vorlesungen über mathematische physik, (1876), Mechanik Leipzig · JFM 08.0542.01
[23] Love, A.E.H., On the small free vibrations and deformations of thin elastic shells, Phil. trans. roy. soc., ser., A 179, 491-546, (1888) · JFM 20.1075.01
[24] Bernadou, M.; Ciarlet, P.G., Sur l’ellipticité du modèle linéaire de coques de W.T. Koiter, (), 89-136 · Zbl 0356.73066
[25] Bathe, K.J., Finite element procedures in engineering analysis, (1982), Prentice-Hall Englewood Cliffs, NJ · Zbl 0528.65053
[26] Bathe, K.J.; Brezzi, F.; Cho, S.W., The MITC7 and MITC9 plate bending elements, Comput. struct., 32, 3/4, 797-814, (1989) · Zbl 0705.73241
[27] Brezzi, F.; Bathe, K.J.; Fortin, M., Mixed-interpolated elements for Reissner-Mindlin plates, Internat. J. numer. methods engrg., 28, 1787-1801, (1989) · Zbl 0705.73238
[28] Ciarlet, P.G., The finite element method for elliptic problems, (1978), North-Holland Amsterdam · Zbl 0445.73043
[29] Trouvé, P., Analyse de quelques Méthodes nonconformes d’eléments finis pour l’approximation des problèmes de coques minces, Thèse de l’université pierre et marie Curie, (1988), Paris
[30] Trouvé, P., Sur la convergence des méthodes d’éléments finis nonconformes pour des problèmes linéaires de coques minces, Numer. math., 57, 481-524, (1990) · Zbl 0673.73060
[31] Sanchez, A.M.; Arcangéli, R., Estimations des erreurs de meilleure approximation polynomiale et d’interpolation de Lagrange dans LES espaces de Sobolev d’ordre non entier, Numer. math., 45, 301-321, (1984) · Zbl 0587.41018
[32] d’Hennezel, F.; Trouvé, P., Résultats d’interpolation dans LES espaces Ws,p (ω), Rapport interne thomson-CSF/LCR no. MAN-90-10, (1990)
[33] Green, A.E.; Zerna, W., Theoretical elasticity, (1968), Oxford University Press · Zbl 0155.51801
[34] Girault, V.; Raviart, P.A., Finite element methods for Navier-Stokes equations, (1986), Springer-Verlag Berlin · Zbl 0396.65070
[35] Stummel, F., Basic compactness properties of nonconforming and hybrid finite element spaces, R.A.I.R.O. anal. numér., 4, 1, 81-115, (1980) · Zbl 0456.65061
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.