×

zbMATH — the first resource for mathematics

Discrete gravity in one dimension. (English) Zbl 0925.83004
Summary: A model for quantum gravity in one (time) dimension is discussed, based on Regge’s discrete formulation of gravity. The nature of exact continuous lattice diffeomorphisms and the implications for a regularized gravitational measure are examined. After introducing a massless scalar field coupled to the edge lengths, the scalar functional integral is performed exactly on a finite lattice, and the ensuing change in the measure is determined. It is found that the renormalization of the cosmological constant due to the scalar field fluctuations vanishes identically in one dimension. A simple decimation renormalization group transformation is performed on the partition function and the results are compared with the exact solution. Finally the properties of the spectrum of the scalar Laplacian are compared with results obtained for a Poissonian distribution of edge lengths.

MSC:
83C27 Lattice gravity, Regge calculus and other discrete methods in general relativity and gravitational theory
83C45 Quantization of the gravitational field
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Regge, T., Nuovo cimento, 19, 558, (1961)
[2] Lee, T.D.; Friedberg, R.; Lee, T.D.; Feinberg, G.; Friedberg, R.; Lee, T.D.; Ren, H.C., Discrete mechanics, (), Nucl. phys. B, Nucl. phys. B, 245, 343, (1984)
[3] Cheeger, J.; Müller, W.; Schrader, R., Commun. math. phys., 92, 405, (1984)
[4] DeWitt, B., ()
[5] DeWitt, B.; DeWitt, B.; Fujikawa, K.; Fujikawa, K.; Yasuda, O.; Anselmi, D., Dynamical theory of groups and fields, (), Phys. rev. D, Nucl. phys. B, Nucl. phys. B, Phys. rev. D, 45, 4473, (1992)
[6] Misner, C.W.; Fadeev, L.; Popov, V.; Fadeev, L.; Popov, V.; Konopleva, N.P.; Popov, V.N., Gauge fields, Rev. mod. phys., Sov. phys. usp., Usp. fiz. nauk., 109, 427, (1979), Harwood New York
[7] Roiček, M.; Williams, R.M.; Roiček, M.; Williams, R.M., Phys. lett. B, Z. phys. C, 21, 371, (1984)
[8] Hamber, H.W.; Williams, R.M., Phys. rev. D, 47, 510, (1993)
[9] Hamber, H.W.; Hamber, H.W., Nucl. phys. B, Nucl. phys. B, 400, 347, (1993)
[10] Itzykson, C., Progress in gauge field theory, () · Zbl 1063.81629
[11] Gardner, E.J.; Itzykson, C.; Derrida, B., J. phys. A, 17, 1093, (1984)
[12] Drouffe, J.M.; Itzykson, C., Nucl. phys. B, 235 [FS11], 45, (1984)
[13] Lehto, M.; Nielsen, H.B.; Ninomiya, M., Nucl. phys. B, 289, 684, (1987)
[14] Elitzur, S.; Forge, A.; Rabinovici, E., preprint
[15] Hamber, H.W.; Williams, R.M.; Hamber, H.W.; Williams, R.M.; Hamber, H.W.; Williams, R.M.; Hamber, H.W.; Williams, R.M., Nucl. phys. B, Nucl. phys. B, Nucl. phys. B, Phys. lett. B, 157, 368, (1985)
[16] Hamber, H.W., Probabilistic methods in quantum field theory and quantum gravity, (), 243-257
[17] Teitelboim, C.; Brown, J.D.; Martinez, E.A., Phys. rev. lett., Phys. rev. D, 42, 1931, (1990)
[18] Polyakov, A.M., Gauge fields and strings, (1989), Oxford Univ. Press Oxford, ch. 9
[19] Christ, N.; Friedberg, R.; Lee, T.D.; Christ, N.; Friedberg, R.; Lee, T.D.; Christ, N.; Friedberg, R.; Lee, T.D., Nucl. phys. B, Nucl. phys. B, Nucl. phys. B, 210 [FS6], 337, (1982)
[20] Dyson, F.; Thouless, D., Phys. rev., J. phys. C, 5, 77, (1972)
[21] Bander, M.; Itzykson, C.; Bander, M.; Itzykson, C., (), Nucl. phys. B, 257 [FS14], 531, (1985)
[22] Jevicki, A.; Ninomiya, M.; Jevicki, A.; Ninomiya, M.; Lehto, M.; Nielsen, H.B.; Ninomiya, M., Phys. lett. B, Phys. rev. D, Nucl. phys. B, 272, 228, (1986)
[23] Ren, H.C., Nucl. phys. B, 301, 661, (1988)
[24] Warner, N., (), 359
[25] Gross, M.; Hamber, H.W., Nucl. phys. B, 364, 703, (1991)
[26] Hamber, H.W.; Williams, R.M., Nucl. phys. B, 415, 463, (1994)
[27] Feynman, R.; Hibbs, A., Quantum mechanics and path integrals, (1962), McGraw New York, See for example · Zbl 0176.54902
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.