Gibbons, G. W.; Papadopoulos, G.; Stelle, K. S. HKT and OKT geometries on soliton black hole moduli spaces. (English) Zbl 0925.83060 Nucl. Phys., B 508, No. 3, 623-658 (1997). Summary: We consider Shiraishi’s metrics on the moduli space of extreme black holes. We interpret the simplification in the pattern of \(N\)-body interactions that he observed in terms of the recent picture of black holes in four and five dimensions as composites, made up of intersecting branes. We then show that the geometry of the moduli space of a class of black holes in five and nine dimensions is hyper-Kähler with torsion, and octonionic-Kähler with torsion, respectively. For this, we examine the geometry of point particle models with extended world-line supersymmetry and show that both of the above geometries arise naturally in this context. In addition, we construct a large class of hyper-Kähler with torsion and octonionic-Kähler with torsion geometries in various dimensions. We also present a brane interpretation of our results. Cited in 2 ReviewsCited in 46 Documents MSC: 83C57 Black holes 53C80 Applications of global differential geometry to the sciences 53C25 Special Riemannian manifolds (Einstein, Sasakian, etc.) 83E30 String and superstring theories in gravitational theory Keywords:hyperKähler torsion geometry; octonionic Kähler torsion geometry; Shiraishi metrics; moduli space geometry; point particle models PDF BibTeX XML Cite \textit{G. W. Gibbons} et al., Nucl. Phys., B 508, No. 3, 623--658 (1997; Zbl 0925.83060) Full Text: DOI arXiv References: [1] Shiraishi, K., Nucl. Phys. B, 402, 399 (1993) [2] Gibbons, G. W.; Ruback, P. J., Phys. Rev. Lett., 57, 1492 (1986) [3] Ruback, P. J., Commun. Math. Phys., 107, 93 (1986) [4] Ferrell, R. C.; Eardley, D. M., Phys. Rev. Lett., 59, 1617 (1987) [5] Felce, A. G.; Samols, T. M., Phys. Lett. B, 308, 30 (1993), hep-th/921118 [6] Papadopoulos, G.; Townsend, P. K., Phys. Lett. B, 380, 273 (1996) [7] Gibbons, G. W.; Kallosh, R., Phys. Rev. D, 51, 2839 (1995) [8] Hitchin, N. J.; Karlhede, A.; Lindström, U.; Roček, M., Commun. Math. Phys., 108, 535 (1987) [9] Howe, P. S.; Papadopoulos, G., Phys. Lett. B, 379, 80 (1996) [10] Harvey, J.; Strominger, A., Phys. Rev. Let., 5, 549 (1991) [11] Ivanova, T. A., Phys. Lett. B, 315, 277 (1993) [12] Günaydin, M.; Nicolai, H., Phys. Lett. B, 376, 329 (1996), (Addendum) [14] Zumino, B., Phys. Lett. B, 87, 203 (1979) [15] Gates, S. J.; Hull, C. M.; Roček, M., Nucl. Phys. B, 248, 157 (1984) [16] Howe, P. S.; Papadopoulos, G., Class. Quant. Grav., 5, 1647 (1988) [17] Coles, R.; Papadopoulos, G., Class. Quant. Grav., 7, 427 (1990) [18] Gibbons, G., Nucl. Phys. B, 207, 337 (198) [19] Tseytlin, A. A., Nucl. Phys. B, 475, 149 (1996), hep-th/9604035 [20] Gauntlett, J. P.; Kastor, D. A.; Traschen, J., Nucl. Phys. B, 478, 544 (1996), hep-th/9604179 [21] Tseytlin, A. A., Mod. Phys. Lett. A, 111, 689 (1996) [22] Gibbons, G. W.; Manton, N., Phys. Lett. B, 356, 32 (1995), hep-th/9506052 [23] Gauntlet, J. P.; Harvey, J. A.; Robinson, M. M.; Waldram, D., Nucl. Phys. B, 411, 461 (1994) [24] Duff, M. J.; Lu, J. X., Nucl. Phys. B, 416, 301 (1994) [25] Papadopoulos, G., The Universality of M-branes, (Talk given at the Imperial College Workshop on Gauge Theories, Applied Supersymmetry and Quantum Gravity (1996)), hep-th/9611029 [26] Howe, P. S.; Papadopoulos, G., Commun. Math. Phys., 151, 467 (1993) [27] Callan, C. G.; Harvey, J. A.; Strominger, A., Nucl. Phys. B, 359, 611 (1991) [28] D’Auria, R.; Regge, T., Nucl. Phys. B, 195, 308 (1982) [29] Rey, S. J., Phys. Rev. D, 43, 526 (1991) [30] Rhamfeld, J., Phys. Lett. B, 372, 198 (1996) [31] Gibbons, G. W.; Rietdijk, R. H.; van Holten, J. W., Nucl. Phys. B, 404, 42 (1993) [32] Howe, P. S.; Papadopoulos, G., Nucl. Phys. B, 381, 360 (1992) [33] Roček, M.; Schoutens, K.; Sevrin, A., Phys. Lett. B, 265, 303 (1991) [34] de Jonghe, F.; Peeters, K.; Sfetsos, K., Class. Quant. Grav., 14, 35 (1997) [35] Duff, M. J.; Stelle, K. S., Phys. Lett. B, 253, 113 (1991) [36] Dabholkar, A.; Gibbons, G. W.; Harvey, J. A.; Ruiz-Ruiz, F., Nucl. Phys. B, 340, 33 (1990) [37] Duff, M. J.; Rahmfeld, J., Nucl. Phys. B, 481, 332 (1996) [38] Buscher, T., Phys. Lett. B, 194, 59 (1987) [39] Bakas, I.; Sfetsos, K., Phys. Lett. B, 349, 448 (1995) [40] Kiritsis, E.; Counnas, C.; Lust, D., Int. J. Mod. Phys. A, 9, 1361 (1994) [41] Gauntlett, J. P.; Gibbons, G. W.; Papadopoulos, G.; Townsend, P. K., Hyper-Kahler manifolds and multiply intersecting branes, Nucl. Phys. (1997), to appear: hep-th/9702202 · Zbl 0934.81064 [45] Papadopoulos, G., Phys. Lett. B, 356, 249 (1995) [46] Gibbons, G. W.; Hawking, S. W., Phys. Lett. B, 78, 430 (1978) [47] Gibbons, G. W.; Ruback, P. J., Commun. Math. Phys., 115, 267 (1988) [48] Callan, C. G.; Maldacena, J., Nucl. Phys. B, 472, 591 (1996), hep-th/9602043 [50] Benci, V.; Giannoni, E., Duke Math. J., 68, 195 (1992) [51] Das, S. R.; Gibbons, G. W.; Mathur, S. D., Phys. Rev. Lett., 78, 0417 (1997), hep-th/9609052 [52] Cornish, N.; Gibbons, G. W., Class. Quant. Grav., 14, 1865 (1997), gr-gc/9612060 [53] Hull, C. M., (Lectures on Nonlinear Sigma Models and Strings, given at the Super-Field Theories Workshop. Lectures on Nonlinear Sigma Models and Strings, given at the Super-Field Theories Workshop, Vancouver, Canada (1986)), published at Vancouver Theory Workshop This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.