×

zbMATH — the first resource for mathematics

Lyapunov design of a new model reference adaptive control system using partial a priori information. (English) Zbl 0925.93271
MSC:
93B51 Design techniques (robust design, computer-aided design, etc.)
93C99 Model systems in control theory
PDF BibTeX XML Cite
Full Text: Link EuDML
References:
[1] B. D. O. Anderson, S. Vongpanitlerd: Network Analysis and Synthesis: A Modern Systems Theory Approach. Prentice-Hall, Englewood Cliffs, N. J. 1973.
[2] I. Bar-Kana: Adaptive control: a simplified approach. Control and Dynamic Systems, Volume 25 (C.T. Leondes, Academic Press, New York 1987, pp. 187-235. · Zbl 0689.93036
[3] I. Bar-Kana, H. Kaufman: Global stability and performance of a control. Internat. J. Control 42 (1985), 1491-1505. · Zbl 0587.93045 · doi:10.1080/00207178508933440
[4] J. T. Bialasiewicz, J. C. Proano: Model reference intelligent control system. Kybernetika 25 (1989), 95-103. · Zbl 0679.93037 · www.kybernetika.cz · eudml:27380
[5] J. R. Broussard, M. J. O’Brien: Feed-forward control to track the output of a forced model. Proceedings of 17th IEEE Conf. on Decision and Control, 1979, pp. 1149-1155.
[6] L. P. Grayson: The status of synthesis using Laypunov’s method. Automatica 1 (1965), 91-121. · Zbl 0142.36002 · doi:10.1016/0005-1098(65)90003-8
[7] P. Ioannou, P. V. Kotovic: Singular perturbations and robust redesign of adaptive control. Proceedings of 21st IEEE Conf. on Decision and Control, 1982, pp. 24-29.
[8] I. D. Landau: Adaptive Control: The Model Reference Approach. Marcel Dekker, New York 1979. · Zbl 0475.93002
[9] L. Mabius, H. Kaufmann: An implicit adaptation algorithm for a linear model reference control system. Proceedings of 1975 IEEE Conf. on Decision and Control, 1975, pp. 864-864.
[10] R. R. Mohler: Nonlinear Systems. Vol. I: Dynamics and Control. Prentice-Hall, Englewood Cliffs, N. J. 1991. · Zbl 0752.93032
[11] K. S. Narendra, A. M. Annaswamy: Stable Adaptive Systems. Prentice-Hall, Englewood Cliffs, N. J. 1989. · Zbl 0758.93039
[12] K. S. Narendra, L. S. Valavani: A comparison of Lyapunov and hyperstability approaches to adaptive control of continuous systems. IEEE Trans. Automat. Control AC-25 (1980), 243-247. · Zbl 0425.93031 · doi:10.1109/TAC.1980.1102316
[13] P. C. Parks: Lyapunov redesign of model reference adaptive control systems. IEEE Trans. Automat. Control AC-11 (1966), 362-367.
[14] V. M. Popov: Hyperstability of Automatic Control Systems. Springer-Verlag, New York 1973. · Zbl 0276.93033
[15] H. Seraji: Decentralized adaptive control of manipulators: theory, simulation, and experimentation. IEEE Trans. Robotics and Autom. 5 (1989), 183-201.
[16] J.-J. E. Slotine, W. Li: Applied Nonlinear Control. Prentice-Hall, Englewood Cliffs, N.J. 1991. · Zbl 0753.93036
[17] K. M. Sobel, H. Kaufmann: Direct model reference adaptive control for a class of MIMO systems. Control and Dynamic Systems, Volume 24 (C.T. Leondes, Academic Press, New York 1986, pp. 245-314.
[18] M. W. Spong, M. Vidyasagar: Robot Dynamics and Control. Wiley, New York 1989.
[19] C. A. Winsor, R. J. Roy: Design of model reference adaptive control systems by Lyapunov’s second method. IEEE Trans. Automat. Control AC-13 (1968), 204.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.