Vardi, Ilan Prime percolation. (English) Zbl 0926.11065 Exp. Math. 7, No. 3, 275-289 (1998). Is there an unbounded walk along Gaussian primes of step size \(\leq L\) ? Not for \(L\leq \sqrt{26}\), and probably not for any bounded \(L\), due to their local density. To investigate this further, the author constructs here a random model that mimicks the Gaussian primes. He then employs percolation theory to show that an unbounded walk of local step size \(L= k\sqrt{\log| z|}\) at a point \(z\) exists (does not exist) if \(k> \sqrt{2\pi \lambda_c}\) (if \(k< \sqrt{2\pi \lambda_c}\), both with probability 1. Here, \(\lambda_c \approx 0.35\) is a constant from continuum percolation of a Poisson process, see Ch. 12.10 of G. Grimmett, Percolation, 2nd ed., Springer, Berlin (1999) for background material. Based on this result and other known facts in this area, the author conjectures that the critical step size for the actual Gaussian primes is also \(\sqrt{2\pi \lambda_c \log| z|}\) (at \(z\)). Reviewer: M.Baake (Tübingen) Cited in 1 ReviewCited in 3 Documents MSC: 11N05 Distribution of primes 82B43 Percolation 11K99 Probabilistic theory: distribution modulo \(1\); metric theory of algorithms 60K35 Interacting random processes; statistical mechanics type models; percolation theory Keywords:unbounded walk along Gaussian primes; percolation; critical step size Citations:Zbl 0990.28733 × Cite Format Result Cite Review PDF Full Text: DOI EuDML EMIS References: [1] van den Berg J., Random Structures Algorithms 8 (3) pp 199– (1996) · Zbl 0852.60108 · doi:10.1002/(SICI)1098-2418(199605)8:3<199::AID-RSA4>3.0.CO;2-T [2] Broadbent S. R., Proc. Cambridge Philos. Soc. 53 pp 629– (1957) · doi:10.1017/S0305004100032680 [3] Coleman M. D., Proc. London Math. Soc. (3) 61 (3) pp 433– (1990) · Zbl 0712.11065 · doi:10.1112/plms/s3-61.3.433 [4] Cramér H., Acta Arithmetica 2 pp 23– (1937) [5] Davenport H., Multiplicative number theory (1980) · Zbl 0453.10002 [6] Domb C., Biometrika 59 pp 209– (1972) · doi:10.1093/biomet/59.1.209 [7] Durrett R., Bull. Amer. Math. Soc. 18 pp 117– (1988) · Zbl 0653.60095 · doi:10.1090/S0273-0979-1988-15625-X [8] Èfros A. L., Translated as Physics and geometry of disorder: percolation theory (1982) [9] Flajolet P., ”Zeta expansions of classical constants” (1996) [10] Gawlinski E. T., J. Phys. A 14 (8) pp L291– (1981) · doi:10.1088/0305-4470/14/8/007 [11] de Gennes P. G., La Recherche 7 pp 919– (1976) [12] Gethner E., Math. Horizons pp 8– (1996) [13] Gethner E., Experiment. Math. 6 (4) pp 289– (1997) · Zbl 1115.11318 · doi:10.1080/10586458.1997.10504616 [14] Gethner E., Amer. Math. Monthly 105 (4) pp 327– (1998) · Zbl 0946.11002 · doi:10.2307/2589708 [15] Gilbert E. N., J. Soc. Indust. Appl. Math. 9 pp 533– (1961) · Zbl 0112.09403 · doi:10.1137/0109045 [16] Granville A., Scand. Actuar. J. pp 12– (1995) · Zbl 0833.01018 · doi:10.1080/03461238.1995.10413946 [17] Granville, A. ”Unexpected irregularites in the distribution of prime numbers”. Proceedings of the International Congress of Mathematicians. 1994, Zurich. Edited by: Chatterji, S. D. pp.388–399. Basel: Birkhäuser. [Granville 1995b] · Zbl 0843.11043 [18] Grimmett G., Percolation (1989) [19] Guy R. K., Unsolved problems in number theory,, 2. ed. (1994) · Zbl 0805.11001 [20] Hahn S. W., J. Phys. A 10 pp 1547– (1977) · doi:10.1088/0305-4470/10/9/013 [21] Halberstam H., Sieve methods (1974) · Zbl 0298.10026 [22] Hall P., Ann. Probab. 13 (4) pp 1250– (1985) · Zbl 0588.60096 · doi:10.1214/aop/1176992809 [23] Hall P., Introduction to the theory of coverage processes (1988) · Zbl 0659.60024 [24] Hardy G. H., Acta Math. 44 pp 1– (1922) · JFM 48.0143.04 · doi:10.1007/BF02403921 [25] Hardy G. H., An introduction to the theory of numbers,, 5. ed. (1979) · Zbl 0423.10001 [26] Hecke E., Math. Zeitschrift 1 pp 357– (1918) · JFM 46.0258.01 · doi:10.1007/BF01465095 [27] Hecke E., Math. Zeitschrift 6 pp 11– (1920) · JFM 47.0152.01 · doi:10.1007/BF01202991 [28] Hildebrand A., J. Reine Angew. Math. 397 pp 162– (1989) [29] Holben C. A., Fibonacci Quart. 6 (5) pp 81– (1968) [30] Jordan J. H., Math. Comp. 24 pp 221– (1970) [31] Jordan J. H., J. Number Theory 8 (1) pp 43– (1976) · Zbl 0333.12001 · doi:10.1016/0022-314X(76)90020-2 [32] Kesten H., Percolation theory for mathematicians (1982) · Zbl 0522.60097 · doi:10.1007/978-1-4899-2730-9 [33] Meester R., Continuum percolation (1996) · Zbl 0858.60092 · doi:10.1017/CBO9780511895357 [34] Penrose M. D., Adv. in Appl. Probab. 23 (3) pp 536– (1991) · Zbl 0729.60106 · doi:10.2307/1427621 [35] Rademacher H., Sitzungsber. Preuss. Akad. Wiss. 24 pp 211– (1923) [36] Riesel H., Prime numbers and computer methods for factorization (1985) · Zbl 0582.10001 · doi:10.1007/978-1-4757-1089-2 [37] Russo L., Z. Wahrsch. Verw. Gebiete 56 (2) pp 229– (1981) · Zbl 0457.60084 · doi:10.1007/BF00535742 [38] Stauffer D., Introduction to percolation theory,, 2. ed. (1994) · Zbl 0990.82530 [39] Vardi I., ”Number theoretic percolation” · Zbl 0953.60096 [40] Wierman J. C., Combin. Probab. Comput. 4 (2) pp 181– (1995) · Zbl 0835.60089 · doi:10.1017/S0963548300001565 [41] Ziff R. M., J. Phys A 19 pp L1169– (1986) · doi:10.1088/0305-4470/19/18/010 [42] Zuev S. A., Teoret. Mat. Fiz. 62 (1) pp 76– (1985) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.