×

Explicit Frobenius descent for \({\mathcal D}^\dagger\)-modules. (Descente par Frobenius explicite pour les \({\mathcal D}^\dagger\)-modules.) (French) Zbl 0926.12006

The purpose of this paper is to give explicit and global formulae for Frobenius decent of \({\mathcal D}_{\mathcal X}^\dagger\)-modules. This completes Berthelot theory. The main argument developed here is an interpretation of the Dwork \(\psi\) function as an infinite differential operator. Applications are given, in this paper to Cartier isomorphism and Cartier operator, and in another paper to new proofs of Christol main theorems (about indexes of differential operators).

MSC:

12H25 \(p\)-adic differential equations
14F30 \(p\)-adic cohomology, crystalline cohomology
14G20 Local ground fields in algebraic geometry
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] André, Y., G-functions and Geometry. G-functions and Geometry, Aspects of Mathematics, E13 (1989), Publ. of the Max-Plank-Institut für Mathematik · Zbl 0688.10032
[2] Baldassarri, F.; Chiarellotto, B. C., On André’s theorem, Contemp. Math., 133, 25-37 (1992) · Zbl 0784.12008
[3] P. Berthelot, Cohomologie rigide et cohomologie rigide à support propre, Univ. Rennes I, 1996; P. Berthelot, Cohomologie rigide et cohomologie rigide à support propre, Univ. Rennes I, 1996
[4] Berthelot, P., Cohomologie rigide et théorie de Dwork: le cas des somes exponentielles, Astérisque, 119-120, 17-49 (1984) · Zbl 0577.14013
[5] P. Berthelot, Cohomologie rigide et théorie des \(D in p\); P. Berthelot, Cohomologie rigide et théorie des \(D in p\) · Zbl 0722.14008
[6] Berthelot, P., \(D^†\), Ann. Sci. Ecole Norm. Sup., 29, 185-272 (1996) · Zbl 0886.14004
[7] P. Berthelot, \(D^†\); P. Berthelot, \(D^†\)
[8] Bosch, S.; Guntzer, U.; Remmert, R., Non Archimedean Analysis. Non Archimedean Analysis, Grundlehren der Math. Wissenschaften, 261 (1984), Springer-Verlag: Springer-Verlag Berlin/New York · Zbl 0539.14017
[9] Christol, G., Systèmes différentiels linéaires \(p\), Bull. Soc. Math. France, 109, 83-122 (1981) · Zbl 0459.12020
[10] Christol, G., Un théorème de transfert pour les disques singuliers réguliers, Astérisque, 119-120, 151-168 (1984) · Zbl 0553.12014
[11] Christol, G.; Dwork, B., Modules différentiels sur des couronnes, Ann. Inst. Fourier, 44, 663-701 (1994) · Zbl 0859.12004
[12] Christol, G.; Mebkhout, Z., Sur le théorème de l’indice des équations différentielles \(p\), Ann. of Math., 146 (1997) · Zbl 0929.12003
[13] G. Christol, Z. Mebkhout, Sur le théorème de l’indice des équations différentielles \(p\); G. Christol, Z. Mebkhout, Sur le théorème de l’indice des équations différentielles \(p\)
[14] L. Garnier, Desceute des isocristaux et \(D^{} in \); L. Garnier, Desceute des isocristaux et \(D^{} in \)
[15] Garnier, L., Correspondance de Katz et irrégularilé des isocristaux surconvergents de rang 1, Manuscripta Math., 87, 327-348 (1995) · Zbl 0832.14011
[16] Illusie, L., Complexe de De Rham-Witt et cohomologie cristalline, Ann. Sci. Ecole Norm. Sup. (4), 12, 501-661 (1979) · Zbl 0436.14007
[17] Katz, N., Nilpotent connections and the monodromy theorem, application of a result of Turrittin, Publ. Math. I.H.E.S, 39, 175-232 (1970) · Zbl 0221.14007
[18] B. Le. Stum, A. Quiros, Transversal crystals of finite level, Univ. Rennes I, 1994; B. Le. Stum, A. Quiros, Transversal crystals of finite level, Univ. Rennes I, 1994 · Zbl 0883.14006
[19] Mebkhout, Z., Sur le théorème de finitude de la cohomologie \(p\), Amer. J. Math., 119, 1027-1081 (1997) · Zbl 0926.14007
[20] Séminaire de géométrie algébrique; Séminaire de géométrie algébrique
[21] Stöhr, K. O.; Voloch, F., A formula for the Cartier operator on plane algebraic curves, J. Reine Angew. Math., 377, 48-64 (1987) · Zbl 0605.14023
[22] Van der Put, M., The cohomology of Monsky and Washnitzer, Meur. Soc. Math. France, 23, 33-59 (1986) · Zbl 0606.14018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.