Montecchiari, Piero; Nolasco, Margherita; Terracini, Susanna A global condition for periodic Duffing-like equations. (English) Zbl 0926.37005 Trans. Am. Math. Soc. 351, No. 9, 3713-3724 (1999). Summary: The authors study Duffing-like equations of the type \(\ddot q= q - \alpha(t)W'(q) \), ith \(\alpha \in C({\mathbb{R}},{\mathbb{R}})\) periodic. They prove that if the stable and unstable manifolds to the origin do not coincide, then the system exhibits positive topological entropy. Cited in 8 Documents MSC: 37C29 Homoclinic and heteroclinic orbits for dynamical systems 37B40 Topological entropy 34C37 Homoclinic and heteroclinic solutions to ordinary differential equations 37J45 Periodic, homoclinic and heteroclinic orbits; variational methods, degree-theoretic methods (MSC2010) Keywords:Duffing equations; homoclinic orbits; multibump solutions; minimax argument × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Melvin S. Berger, Nonlinearity and functional analysis, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1977. Lectures on nonlinear problems in mathematical analysis; Pure and Applied Mathematics. · Zbl 0368.47001 [2] Ugo Bessi, A variational proof of a Sitnikov-like theorem, Nonlinear Anal. 20 (1993), no. 11, 1303 – 1318. · Zbl 0778.34036 · doi:10.1016/0362-546X(93)90133-D [3] S. V. Bolotin, Existence of homoclinic motions, Vestnik Moskov. Univ. Ser. I Mat. Mekh. 6 (1983), 98 – 103 (Russian). · Zbl 0549.58019 [4] B. Buffoni and E. Séré, A global condition for quasi-random behavior in a class of conservative systems, Comm. Pure Appl. Math. 49 (1996), no. 3, 285 – 305. , https://doi.org/10.1002/(SICI)1097-0312(199603)49:33.3.CO;2-# · Zbl 0860.58027 [5] Shui Nee Chow, Jack K. Hale, and John Mallet-Paret, An example of bifurcation to homoclinic orbits, J. Differential Equations 37 (1980), no. 3, 351 – 373. · Zbl 0439.34035 · doi:10.1016/0022-0396(80)90104-7 [6] K. Cieliebak and E. Séré, Pseudo-holomorphic curves and the shadowing lemma, Duke Math. J. (to appear). · Zbl 0955.37039 [7] Vittorio Coti Zelati, Ivar Ekeland, and Éric Séré, A variational approach to homoclinic orbits in Hamiltonian systems, Math. Ann. 288 (1990), no. 1, 133 – 160. · Zbl 0731.34050 · doi:10.1007/BF01444526 [8] Vittorio Coti Zelati and Paul H. Rabinowitz, Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials, J. Amer. Math. Soc. 4 (1991), no. 4, 693 – 727. · Zbl 0744.34045 [9] P.-L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. I, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), no. 2, 109 – 145 (English, with French summary). P.-L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. II, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), no. 4, 223 – 283 (English, with French summary). [10] C. Miranda, Un’osservazione su un teorema di Brouwer, Boll. Unione Mat. Ital. 3 (1940), 5-7. · JFM 66.0217.01 [11] P. Montecchiari, M. Nolasco and S. Terracini, Multiplicity of homoclinics for a class of time recurrent second order Hamiltonian systems, Calc. of Var. (to appear). CMP 98:02 · Zbl 0886.58014 [12] Jürgen Moser, Stable and random motions in dynamical systems, Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1973. With special emphasis on celestial mechanics; Hermann Weyl Lectures, the Institute for Advanced Study, Princeton, N. J; Annals of Mathematics Studies, No. 77. · Zbl 0271.70009 [13] M. Nolasco, Multibump solutions for a class of time dependent second order Hamiltonian systems, Ph.D. thesis, SISSA, 1995. [14] Kenneth J. Palmer, Exponential dichotomies and transversal homoclinic points, J. Differential Equations 55 (1984), no. 2, 225 – 256. · Zbl 0508.58035 · doi:10.1016/0022-0396(84)90082-2 [15] Mark Pollicott, Lectures on ergodic theory and Pesin theory on compact manifolds, London Mathematical Society Lecture Note Series, vol. 180, Cambridge University Press, Cambridge, 1993. · Zbl 0772.58001 [16] Paul H. Rabinowitz, A multibump construction in a degenerate setting, Calc. Var. Partial Differential Equations 5 (1997), no. 2, 159 – 182. · Zbl 0876.34055 · doi:10.1007/s005260050064 [17] Éric Séré, Existence of infinitely many homoclinic orbits in Hamiltonian systems, Math. Z. 209 (1992), no. 1, 27 – 42. · Zbl 0725.58017 · doi:10.1007/BF02570817 [18] Éric Séré, Looking for the Bernoulli shift, Ann. Inst. H. Poincaré Anal. Non Linéaire 10 (1993), no. 5, 561 – 590 (English, with English and French summaries). · Zbl 0803.58013 [19] S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967), 747 – 817. · Zbl 0202.55202 [20] Stephen Wiggins, Global bifurcations and chaos, Applied Mathematical Sciences, vol. 73, Springer-Verlag, New York, 1988. Analytical methods. · Zbl 0661.58001 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.