de Cataldo, Mark Andrea A. Codimension two nonsingular subvarieties of quadrics: Scrolls and classification in degree \(d\leq 10\). (English) Zbl 0927.14027 J. Math. Soc. Japan 50, No. 4, 879-902 (1998). Let \(X\) be a codimension two nonsingular subvariety of a nonsingular quadric \({\mathcal Q}^{n}\) of dimension \(n\geq 5\). We classify such subvarieties when they are scrolls. We also classify them when the degree \(d\leq 10\). Both results were known when \(n=4\). Reviewer: M.A.A.de Cataldo (Bonn) MSC: 14R05 Classification of affine varieties 14M07 Low codimension problems in algebraic geometry 14J40 \(n\)-folds (\(n>4\)) 14M06 Linkage Keywords:liaison; low codimension; low degree; quadric; scroll; vector bundle PDF BibTeX XML Cite \textit{M. A. A. de Cataldo}, J. Math. Soc. Japan 50, No. 4, 879--902 (1998; Zbl 0927.14027) Full Text: DOI arXiv