zbMATH — the first resource for mathematics

Representations of symmetric groups and free probability. (English) Zbl 0927.20008
Close connections are established between asymptotic properties of representations of symmetric groups \(S_q\) when \(q\to\infty\) and the combinatorial treatment, due to R. Speicher, or free probability theory. This investigation, inspired by the works of A. M. Vershik and S. V. Kerov [see, e.g. A. M. Vershik in: Proc. Int. Congr. Math. Zürich 1994, Vol. 2, 1384-1394 (1995; Zbl 0843.05003), and especially S. V. Kerov, Funkts. Anal. Prilozh. 27, No. 2, 32-49 (1993; Zbl 0808.05098), Tr. St-Peterbg. Mat. Obshch. 4, 165-192 (1996)], develops some previous results of the author [cf. e.g., Pac. J. Math. 171, No. 2, 373-387 (1995; Zbl 0854.60070), Discrete Math. 175, No. 1-3, 41-53 (1997; Zbl 0892.05006)].
The representations considered mainly correspond to “\(A\)-balanced” Young diagrams \(\lambda_q\), with \(q\) boxes, whose largest column and line do not exceed \(Aq^{1/2}\), \(A>1\). If \(\lambda_q\) (viewed as continuous piecewise linear functions on \(\mathbb{R}\)) upon rescaling by a factor \(q^{-1/2}\) converge to a certain limit shape \(\omega\), then the exact asymptotics of the normalized characters corresponding to \(\lambda_q\) is given in terms of the free cumulants of a unique probability measure \(m_\omega\) (associated with \(\omega\) by equating the generating function of the continuous Young diagram \(\omega\) to the Cauchy transform of compactly supported \(m_\omega\) on \(\mathbb{R}\)). Moreover, specific asymptotic patterns are found to be inherent to operations on the set of equivalence classes of representations, such as tensor product, restriction to a subgroup, and induction (outer product). It is shown that, for large enough initial diagrams, most Young diagrams appearing in the decomposition of the resulting representations are close to a specific shape which can be computed using the methods of free probability theory.

20C30 Representations of finite symmetric groups
46L53 Noncommutative probability and statistics
20C32 Representations of infinite symmetric groups
05E10 Combinatorial aspects of representation theory
60B15 Probability measures on groups or semigroups, Fourier transforms, factorization
Full Text: DOI
[1] Aronszajn, N.; Donoghue, W.F., On exponential representations of analytic functions in the upper half-plane with positive imaginary part, J. anal. math., 5, 321-388, (1956) · Zbl 0138.29502
[2] Biane, P., Permutation model for semi-circular systems and quantum random walks, Pacific J. math., 171, 373-387, (1995) · Zbl 0854.60070
[3] Biane, P., Representations of unitary groups and free convolution, Publ. res. inst. math. sci., 31, 63-79, (1995) · Zbl 0856.22017
[4] Biane, P., Minimal factorizations of a cycle and central multiplicative functions on the infinite symmetric group, J. combin. theory ser. A, 76, 197-212, (1996) · Zbl 0861.05001
[5] Biane, P., Some properties of crossings and partitions, Discrete math., 175, 41-53, (1997) · Zbl 0892.05006
[6] Bercovici, H.; Voiculescu, D., Free convolution of measures with unbounded support, Indiana univ. math. J., 42, 733-773, (1993) · Zbl 0806.46070
[7] Foata, D.; Schützenberger, M.P., Théorie Géométrique des polynômes eulériens, Lecture notes in mathematics, 138, (1970), Springer-Verlag Berlin/New York · Zbl 0214.26202
[8] James, G.D.; Kerber, A., The representation theory of the symmetric group, Encyclopaedia of mathematics and its applications, 16, (1981), Addison-Wesley Reading
[9] Kerov, S.V., Transition probabilities of continual Young diagrams and the Markov moment problem, Funct. anal. appl., 27, 104-117, (1993) · Zbl 0808.05098
[10] Kerov, S.V., A differential model of growth of Young diagrams, Proc. Saint |St. Petersburg math. soc., 4, 167-194, (1996)
[11] Kreweras, G., Sur LES partitions non croisées d’un cycle, Discrete math., 1, 333-350, (1972) · Zbl 0231.05014
[12] Logan, B.F.; Shepp, L.A., A variational problem for random Young tableaux, Adv. math., 26, 206-222, (1977) · Zbl 0363.62068
[13] Macdonald, I.G., Symmetric functions and Hall polynomials, (1979), Oxford Univ. Press Oxford · Zbl 0487.20007
[14] Nica, A., R, J. funct. anal., 135, 271-296, (1996) · Zbl 0837.60008
[15] Nica, A.; Speicher, R., On the multiplication of freeN, Amer. J. math., 118, 799-832, (1996)
[16] Okounkov, A.; Vershik, A.M., A new approach to the representation theory of symmetric groups, Selecta math., 4, 581-605, (1996) · Zbl 0959.20014
[17] Robinson, G.de B., Representation theory of the symmetric group, (1961), University of Toronto Press Toronto
[18] Speicher, R., Multiplicative functions on the lattice of non-crossing partitions and free convolution, Math. annal., 298, 141-159, (1994)
[19] R. Speicher, Combinatorial theory of the free product with amalgamation and operator-valued free probability theory, Mem. Amer. Math. Soc, · Zbl 0935.46056
[20] Vershik, A.M., Asymptotic aspects of the representation theory of symmetric groups, Selecta math. sovietica, 11, 159-177, (1992) · Zbl 0795.20007
[21] Vershik, A.M., Asymptotic combinatorics and algebraic analysis, Proceedings of the international congress of mathematicians, Zürich, 2, 1384-1394, (1994) · Zbl 0843.05003
[22] Vershik, A.M.; Kerov, S.V., Asymptotics of the Plancherel measure of the symmetric group, Soviet math. dokl., 18, 527-531, (1977) · Zbl 0406.05008
[23] Vershik, A.M.; Kerov, S.V., The asymptotic character theory of the symmetric group, Funct. anal. appl., 15, 246-255, (1981) · Zbl 0507.20006
[24] Voiculescu, D.V., Addition of non-commuting random variables, J. operator theory, 18, 223-235, (1987) · Zbl 0662.46069
[25] Voiculescu, D.V., Limit laws for random matrices and free products, Invent. math., 104, 201-220, (1991) · Zbl 0736.60007
[26] Voiculescu, D.V., Sur LES représentations factorielles finies de U(∞) et autres groupes semblables, C. R. acad. sci. Paris, Sér. A., 279, 945-946, (1974) · Zbl 0291.22006
[27] Voiculescu, D.V.; Dykema, K.; Nica, A., Free random variables, CRM monograph series, 1, (1992), Amer. Math. Soc Providence
[28] Weingarten, D., Asymptotic behaviour of group integrals in the limit of infinite rank, J. math. phys., 19, 999-1001, (1978) · Zbl 0388.28013
[29] Weyl, H., The classical groups. their invariants and representations, (1939), Princeton Univ. Press Princeton · JFM 65.0058.02
[30] Xu, F., A random matrix model from two-dimensional Yang-Mills theory, Comm. math. phys., 190, 287-307, (1997) · Zbl 0937.81043
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.