# zbMATH — the first resource for mathematics

Derivation of microstructure models of fluid flow by homogenization. (English) Zbl 0927.35081
The author deals with the case of flow in a medium composed of two materials with very different properties by homogenization. The main result is as follows. Let $$\Omega$$ be an open subset of $$\mathbb{R}^N$$ and $$Y= [0,1]^N$$. Following G. Allaira [SIAM J. Math. Anal. 23, No. 6, 1482-1518 (1992; Zbl 0770.35005)]. $$Y$$ is divided into two parts $$Y_1$$ and $$Y_2$$. $$\Omega$$ is assumed to have an $$\varepsilon Y$$ periodic structure. The coefficient functions $$a_{ij}(t,y)\in C([0, T]\times Y_1)$$ and $$A_{ij}(t, y)\in C([0, T]\times Y_2)$$ are uniformly positive definite and symmetric. Off their respective domains they are defined to be zero. Then, there exists a couple of functions $$u(x,t)$$ and $$U(x,t,y)$$ which is the unique solution of the microstructure model: ${\partial u\over\partial t}- {\partial\over\partial x_i} \Biggl(a^h_{ij}{\partial u\over\partial x_j}\Biggr)+ \int_{\partial Y_2} A_{ij}{\partial U\over\partial y_j} \nu_i ds=f\quad\text{in }\Omega\times(0, T),$
${\partial U\over\partial t}-{\partial\over\partial y_j} \Biggl(A_{ij}{\partial U\over\partial y_j}\Biggr)= 0\quad\text{in }\Omega\times Y_2\times (0,T),$
$U(x,t,x)= u(x,t)\quad\text{on }\partial Y_2,$
$U(x,0,y)= U_0(x,y)\quad\text{in }\Omega\times Y_2,$
$u(x,0)= u_0(x)\quad\text{in }\Omega,$ where $$a^h_{ij}(t)$$ is the homogenized coefficient of $$a_{ij}(t,y)$$.

##### MSC:
 35Q35 PDEs in connection with fluid mechanics 35B27 Homogenization in context of PDEs; PDEs in media with periodic structure 76S05 Flows in porous media; filtration; seepage
Zbl 0770.35005
Full Text:
##### References:
 [1] Allaire, Grégoire, Homogenization and two-scale convergence, SIAM J. math. anal., 23, 1482-1518, (1992) · Zbl 0770.35005 [2] Arbogast, T.; Douglas, J.; Hornung, U., Derivation of the double porosity model of single phase flow via homogenization theory, SIAM J. math. anal., 21, 823-836, (1990) · Zbl 0698.76106 [3] Bensoussan, A.; Lions, J.L.; Papanicolaou, G., Asymptotic analysis for periodic structures, (1978), North-Holland Amsterdam · Zbl 0411.60078 [4] Bourgeat, A.; Luckhaus, S.; Mikelić, A., Convergence of the homogenization process for a double-porosity model of immiscible two-phase flow, SIAM J. math. anal., 27, 1520-1543, (1996) · Zbl 0866.35018 [5] Carroll, R.W.; Showalter, R.E., Singular and degenerate Cauchy problems, (1976), Academic Press New York [6] Clark, G.W.; Packer, L.A., Two-scale convergence of degenerate evolution equations, J. math. anal. appl., 214, 420-438, (1997) · Zbl 0896.35014 [7] Clark, G.W.; Showalter, R.E., Fluid flow in a layered medium, Quart. appl. math., 52, 777-795, (1994) · Zbl 0815.35038 [8] Hornung, U., Homogenization and porous media, (1997), Springer-Verlag Berlin/New York · Zbl 0872.35002 [9] Sanchez-Palencia, E., Non-homogeneous media and vibration theory, Lecture notes in physics, (1980), Springer-Verlag New York · Zbl 0432.70002 [10] Showalter, R.E., Hilbert space methods for partial differential equations, (1977), Pitman London · Zbl 0364.35001 [11] Showalter, R.E., Monotone operators in Banach space and nonlinear partial differential equations, Mathematical surveys and monographs, (1997), Am. Math. Soc Providence · Zbl 0870.35004 [12] Showalter, R.W.; Walkington, N.J., Diffusion of fluid in a fissured medium with microstructure, SIAM J. math. anal., 22, 1702-1722, (1991) · Zbl 0764.35053 [13] Showalter, R.E.; Walkington, N.J., Micro-structure models of diffusion in fissured media, J. math. anal. appl., 155, 1-20, (1991) · Zbl 0711.60078
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.