The \(p\)-variation of partial sum processes and the empirical process. (English) Zbl 0927.62049

Summary: The \(p\)-variation of a function \(f\) is the supremum of the sums of the \(p\)th powers of absolute increments of \(f\) over nonoverlapping intervals. Let \(F\) be a continuous probability distribution function. R. M. Dudley [Ann. Probab. 20, No. 4, 1968-1982 (1992; Zbl 0778.60026); Ann. Stat. 22, No. 1, 1-20 (1994; Zbl 0816.62039); D. Pollard et al. (eds.), Festschrift for Lucien Le Cam, 219-233 (1997; Zbl 0914.62037)] has shown that the \(p\)-variation of the empirical process is bounded in probability as \(n\to\infty\) if and only if \(p>2\), and for \(1\leq p\leq 2\), the \(p\)-variation of the empirical process is at least \(n^{1-p/2}\) and is at most of the order \(n^{1-p/2}(\log\log n)^{p/2}\) in probability. We prove that the exact order of the 2-variation of the empirical process is \(\log\log n\) in probability, and for \(1\leq p<2\), the \(p\)-variation of the empirical process is of exact order \(n^{1-p/2}\) in expectation and almost surely.
Let \(S_j:=X_1+X_2+\cdots+X_j\). Then the \(p\)-variation of the partial sum process for \(\{X_1,X_2,\dots,X_n\}\) is defined as that of \(f\) on \((0,n]\), where \(f(t)=S_j\) for \(j-1<t\leq j\), \(j=1,2,\dots,n\). J. Bretagnolle [Lecture Notes Math. 258, 64-71 (1972; Zbl 0273.60052)] has shown that the expectation of the \(p\)-variation for independent centered random variables \(X_i\) with bounded \(p\)th moments is of order \(n\) for \(1\leq p<2\). We prove that for \(p=2\), the 2-variation of the partial sum process of i.i.d. centered nonconstant random variables with finite \(2+\delta\) moment for some \(\delta>0\) is of exact order \(n\log\log n\) in probability.


62G30 Order statistics; empirical distribution functions
60G50 Sums of independent random variables; random walks
26A45 Functions of bounded variation, generalizations
26A48 Monotonic functions, generalizations
62G20 Asymptotic properties of nonparametric inference
Full Text: DOI


[1] Breiman,L. (1968). Probability. Addison-Wesley, Reading, MA. · Zbl 0174.48801
[2] Bretagnolle,J. (1972). p-variation de fonctions aléatoires. II. Processus a accroissements indépendants. Lecture Notes in Math. 258 64-71. Springer, Berlin. · Zbl 0273.60052
[3] Chung,K. L. (1949). An estimate concerning the Kolmogoroff limit distribution. Trans. Amer. Math. Soc. 67 36-50. JSTOR: · Zbl 0034.22602
[4] Dudley,R. M. (1992). Fréchet differentiability, p-variation and uniform Donsker classes. Ann. Probab. 20 1968-1982. · Zbl 0778.60026
[5] Dudley,R. M. (1993). Real Analysis and Probability, 2nd ed. Chapman and Hall, New York. · Zbl 0786.31004
[6] Dudley,R. M. (1994). The order of the remainder in derivatives of composition and inverse operators for p-variation norms. Ann. Statist. 22 1-20. · Zbl 0816.62039
[7] Dudley,R. M. (1997). Empirical processes and p-variation. In Festschrift for Lucien Le Cam (D. Pollard, E. Torgersen and G. L. Yang, eds.) 219-233. Springer, New York. · Zbl 0914.62037
[8] Dudley,R. M. and Philipp,W. (1983). Invariance principles for sums of Banach space valued random elements and empirical processes.Wahrsch. Verw. Gebiete 62 509- 552. · Zbl 0488.60044
[9] Huang,Y.-C. (1994). Speed of convergence of classical empirical processes in p-variationnorm. Ph.D. dissertation, MIT.
[10] Kuelbs,J. (1977). Kolmogorov’s law of the iterated logarithm for Banach space valued random variables. Illinois J. Math. 21 784-800. · Zbl 0392.60010
[11] Lépingle,D. (1976). La variation d’ordre p des semi-martingales.Wahrsch. Verw. Gebiete 36 295-316. · Zbl 0325.60047
[12] Love,E. R. and Young,L. C. (1937). Sur une classe de fonctionelles linéaires. Fund. Math 28 243-257. · JFM 63.0356.02
[13] Petrov,V. V. (1975). Sums of Independent Random Variables. Springer, New York. · Zbl 0322.60043
[14] Pisier,G. and Xu,Q. (1988). The strong p-variation of martingales and orthogonal series. Probab. Theory Related Fields 77 497-514. · Zbl 0632.60004
[15] Qian,J. (1997). The p-variation of partial sum processes and empirical processes. Ph.D. dissertation, Tufts Univ. · Zbl 0927.62049
[16] Shorack,G. R. and Wellner,J. A. (1986). Empirical Processes with Applications to Statistics. Wiley, New York. · Zbl 1170.62365
[17] Smirnov,N. V. (1944). Approximate laws of distribution of random variables from empirical data. Uspekhi Mat. Nauk 10 179-206 (in Russian).
[18] Taylor,S. J. (1972). Exact asymptotic estimates of Brownian path variation. Duke Math. J. 39 219-241. · Zbl 0241.60069
[19] Wiener,N. (1924). The quadratic variation of a function and its Fourier coefficients. J. Math. Phys. 3 72-94. · JFM 50.0203.01
[20] Young,L. C. (1936). An inequality of the Hölder type, connected with Stieltjes integration. Acta Math. 67 251-282. · Zbl 0016.10404
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.