×

zbMATH — the first resource for mathematics

Quickest detection with exponential penalty for delay. (English) Zbl 0927.62077
Summary: The problem of detecting a change in the probability distribution of a random sequence is considered. Stopping times are derived that optimize the tradeoff between detection delay and false alarms within two criteria. In both cases, the detection delay is penalized exponentially rather than linearly, as has been the case in previous formulations of this problem. The first of these two criteria is to minimize a worst-case measure of the exponential detection delay within a lower-bound constraint on the mean time between false alarms.
Expressions for the performance of the optimal detection rule are also developed for this case. It is seen, for example, that the classical Page CUSUM test can be arbitrarily unfavorable relative to the optimal test under exponential delay penalty. The second criterion considered is a Bayesian one, in which the unknown change point is assumed to obey a geometric prior distribution. In this case, the optimal stopping time effects an optimal trade-off between the expected exponential detection delay and the probability of false alarm. Finally, generalizations of these results to problems in which the penalties for delay may be path dependent are also considered.

MSC:
62L10 Sequential statistical analysis
62L15 Optimal stopping in statistics
94A13 Detection theory in information and communication theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] BASSEVILLE, M. and NIKIFOROV, I. 1993. Detection of Abrupt Changes: Theory and Applications. Prentice-Hall, Englewood Cliffs, NJ. Z.
[2] BEIBEL, M. 1994. Bay es problems in change-point models for the Wiener process. In Change Z. Point Problems E. Carlstein, H.-G. Muller and D. Siegmund, eds. 1 6. IMS, Hayẅard, CA. Z. · Zbl 1157.62356
[3] BEIBEL, M. 1996. A note on Ritov’s approach to the minimax property of the cusum procedure. Ann. Statist. 24 1804 1812. Z. · Zbl 0868.62063
[4] BEIBEL, M. and LERCHE, H. R. 1997. A new look at optimal stopping problems related to mathematical finance. Statist. Sinica 7 93 108. Z. · Zbl 0895.60048
[5] BOJDECKI, T. and HOSZA, J. 1984. On a generalized disorder problem. Stochastic Process. Appl. 18 349 359. Z. · Zbl 0549.60038
[6] BRODSKY, B. E. and DARKHOVSKY, B. S. 1992. Nonparametric Methods in Change-point Problems. Kluwer, Boston. Z.
[7] CARLSTEIN, E., MULLER, H.-G. and SIEGMUND, D., eds. 1994. Change Point Problems. IMS, Ḧay ward, CA. Z. · Zbl 0942.00037
[8] CHOW, Y.S., ROBBINS, H. and SIEGMUND, D. 1971. Great Expectations: The Theory of Optimal Stopping. Houghton-Mifflin, Boston. Z. · Zbl 0233.60044
[9] CHUNG, K. L. 1968. A Course in Probability Theory. Academic Press, New York. Z. · Zbl 0159.45701
[10] DOOB, J. L. 1953. Stochastic Processes. Wiley, New York. Z. · Zbl 0053.26802
[11] DUBINS, L. E. and TEICHER, H. 1967. Optimal stopping when the future is discounted. Ann. Math. Statist. 38 601 605. Z. · Zbl 0158.17201
[12] DVORETSKY, A., KIEFER, J. and WOLFOWITZ, J. 1953. Sequential decision problems for processes with continuous time parameter. Testing hy potheses. Ann. Math. Statist. 24 254 264. Z. · Zbl 0050.14803
[13] JAMES, B., JAMES, K. L. and SIEGMUND, D. 1988. Conditional boundary crossing probabilities with applications to change-point problems. Ann. Probab. 16 825 839. · Zbl 0645.62031
[14] JANSON, S. 1986. Moments for first-passage and last-exit times, the minimum, and related quantities for random walks with positive drift. Adv. in Appl. Probab. 18 865 879. Z. JSTOR: · Zbl 0612.60060
[15] KHAN, R. A. 1978. Wald’s approximations to the average run length in cusum procedures. J. Statist. Plann. Inference 2 63 77. Z. · Zbl 0373.62045
[16] KENNEDY, D. P. 1976. Martingales related to cumulative sum tests and single-server queues. Stochastic Process. Appl. 4 261 269. Z. · Zbl 0338.60030
[17] KERESTECIOGLU, F. 1993. Change Detection and Input Design in Dy namical Sy stems. Research Studies Press, Taunton, UK. Z.
[18] LEHOCZKY, J. P. 1977. Formulas for stopped diffusion processes with stopping times based on the maximum. Ann. Probab. 5 601 607. Z. · Zbl 0367.60093
[19] LORDEN, G. 1971. Procedures for reacting to a change in distribution. Ann. Math. Statist. 42 1897 1908. Z. · Zbl 0255.62067
[20] MOUSTAKIDES, G. B. 1986. Optimal stopping times for detecting changes in distributions. Ann. Statist. 14 1379 1387. Z. · Zbl 0612.62116
[21] NEVEU, J. 1975. Discrete Parameter Martingales. North-Holland, Amsterdam. Z. · Zbl 0345.60026
[22] PAGE, E. S. 1954. Continuous inspection schemes. Biometrika 41 100 115. Z. JSTOR: · Zbl 0056.38002
[23] PELKOWITZ, L. 1987. The general discrete time disorder problem. Stochastics 20 89 110. Z. · Zbl 0618.60041
[24] REy NOLDS, M. R., JR. 1975. Approximations to the average run length in cumulative sum control charts. Technometrics 17 65 71. Z. JSTOR:
[25] RITOV, Y. 1990. Decision theoretic optimality of the cusum procedure. Ann. Statist. 18 1464 1469. Z. · Zbl 0712.62073
[26] ROBBINS, H. E. and SAMUEL, E. 1966. An extension of Wald’s Lemma. J. Appl. Probab. 3 272 273. Z. JSTOR: · Zbl 0245.60040
[27] SHIRy AYEV, A. N. 1963. On optimum methods in quickest detection problems. Theory Probab. Appl. 8 22 46. Z. · Zbl 0213.43804
[28] SHIRy AYEV, A. N. 1973. Statistical Sequential Analy sis. Amer. Math. Soc., Providence, RI. Z.
[29] SHIRy AYEV, A. N. 1978. Optimal Stopping Rules. Springer, New York. Z. · Zbl 0391.60002
[30] SIEGMUND, D. 1985. Sequential Analy sis. Springer, New York. Z.
[31] TAy LOR, H. M. 1975. A stopped Brownian motion formula. Ann. Probab. 3 234 246. Z. · Zbl 0303.60072
[32] WALD, A. 1947. Sequential Analy sis. Wiley, New York. Z.
[33] YAKIR, B. 1996. Dy namic sampling policy for detecting a change in distribution, with a probability bound on false alarm. Ann. Statist. 24 2199 2214. · Zbl 0880.62084
[34] PRINCETON, NEW JERSEY 08544 E-MAIL: poor@princeton.edu
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.