Buldygin, V. V.; Fu, Lee. On asymptotic normality of estimates of impulse response function for linear systems. I. (English. Russian original) Zbl 0927.62096 Theory Probab. Math. Stat. 54, 17-24 (1997); translation from Teor. Jmovirn. Mat. Stat. 54, 16-24 (1996). The authors study the causal linear systems \[ Y_{\Delta}(t)=\int_0^{\infty}H(\tau)X_{\Delta}(t-\tau)d\tau,\quad H(\tau)=0,\quad \tau\leq 0. \] They consider systems for \(X_{\Delta},\) which is not a white noise. Properties of the estimates \[ \widehat H_{T,\Delta}(\tau)=(cT)^{-1} \int_0^T X_{\Delta}(t)Y_{\Delta}(t+\tau)dt \] of the impulse response function \(H\) for stationary Gaussian \(X_{\Delta}\) are obtained. Asymptotic properties of the correlation function of \[ Z_{T,\Delta}(\tau)=\sqrt{T}[ \widehat H_{T,\Delta}(\tau)-E \widehat H_{T,\Delta}(\tau)] \] are considered. Reviewer: A.Ya.Olenko (Kyïv) Cited in 1 ReviewCited in 2 Documents MSC: 62M20 Inference from stochastic processes and prediction 62G20 Asymptotic properties of nonparametric inference 60G35 Signal detection and filtering (aspects of stochastic processes) Keywords:asymptotic normality; linear systems; impulse response functions; stationary Gaussian processes Citations:Zbl 0927.62097 PDFBibTeX XMLCite \textit{V. V. Buldygin} and \textit{Lee. Fu}, Teor. Ĭmovirn. Mat. Stat. 54, 17--24 (1996; Zbl 0927.62096); translation from Teor. Jmovirn. Mat. Stat. 54, 16--24 (1996)