zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Morita equivalence based on contexts for various categories of modules over associative rings. (English) Zbl 0928.16007
For an associative ring $R$ (possibly without identity) various subcategories of the category of all (right) $R$-modules MOD-$R$ are considered, in particular: $\text{CMOD-}R=\{M_R\mid M\simeq\Hom_R(R,M)$ canonically}, $\text{DMOD-}R=\{M_R\mid M\otimes_RR\simeq M$ canonically}. Every Morita context between $R$ and $S$ with epimorphic pairings induces the equivalences $\text{CMOD-}R\simeq \text{CMOD-}S$ and $\text{DMOD-}R\simeq\text{DMOD-}S$. The converse of this fact is proved under hypotheses weaker than the surjectivity of pairings. Namely, for every Morita context $(R,S,P,Q,\varphi,\psi)$ the following conditions are equivalent: (1) $\Hom_R(P,-)$ and $\Hom_S(Q,-)$ are inverse category equivalences between the categories CMOD-$R$ and CMOD-$S$; (2) $P\otimes_R-$ and $Q\otimes_S-$ are inverse category equivalences between the categories $R$-DMOD and $S$-DMOD; (3) the given context is left acceptable, i.e. $\forall(r_n)_{n\in\bbfN}\in R^\bbfN\ \exists n_0\in\bbfN$ such that $r_1r_2\cdots r_{n_0}\in\text{Im}(\varphi)$, $\forall(s_m)_{m\in\bbfN}\in S^\bbfN\ \exists m_0\in\bbfN$ such that $s_1s_2\cdots s_{m_0}\in\text{Im}(\psi)$. An example is given of a ring $R$ such that CMOD-$R$ is not equivalent to DMOD-$R$.

MSC:
16D90Module categories (associative rings and algebras); Morita equivalence and duality
18E35Localization of categories
WorldCat.org
Full Text: DOI
References:
[1] Abrams, G. D.: Morita equivalences for rings with local units. Comm. algebra 11, No. 8, 801-837 (1983) · Zbl 0503.16034
[2] Anderson, F. W.; Fuller, K. R.: Rings and categories of modules. (1974) · Zbl 0301.16001
[3] Ánh, P. N.; Márki, L.: Morita equivalences for rings without identity. Tsukuba J. Math. 11, 1-16 (1987) · Zbl 0627.16031
[4] Garcia, J. L.; Simón, J. J.: Morita equivalences for idempotent rings. J. pure appl. Algebra 76, 39-56 (1991) · Zbl 0747.16007
[5] Gentle, R.: T.T.F. theories in abelian categories. Comm. algebra 16, No. 5, 877-908 (1988) · Zbl 0652.18005
[6] Kato, T.: Morita contexts and equivalences II. Proc. 20th symp. On ring theory, 31-36 (1987) · Zbl 0653.16029
[7] Kato, T.; Ohtake, K.: Morita contexts and equivalences. J. algebra 61, 360-366 (1979) · Zbl 0427.16031
[8] Müller, B. J.: The quotient category of a Morita context. J. algebra 28, 389-407 (1974) · Zbl 0277.16019
[9] Stenström, B.: Rings of quotients. (1975) · Zbl 0296.16001
[10] Wisbauer, R.: Grundlagen der modul- und ringtheorie. (1988) · Zbl 0657.16001