×

zbMATH — the first resource for mathematics

Hodge theory and holomorphic De Rham complexes for certain analytic spaces. I. (Théorie de Hodge et complexes de De Rham holomorphes pour certains espaces analytiques. I.) (French) Zbl 0928.32004
For a complex analytic space with a smooth singular locus and a smooth exceptional divisor, the following constructions are given: a sequence of de Rham complexes, Hodge filtrations with associated spectral sequences, holomorphic de Rham complexes with the usual properties in Hodge theory. Specifically, (i) for every natural number \(r\), a fine de Rham complex of differential forms is constructed, with a type definition for the forms; (ii) the associated spectral sequence converges to the graded de Rham cohomology; (iii) for every \(r\), a holomorphic de Rham complex is defined whose cohomology is the first term of the mentioned spectral sequence; (iv) for sufficiently great \(r\), the graded de Rham cohomology does not depend on \(r\).
Remark: There is the question of defining the analog of harmonic forms, i.e. is it possible to define canonical representatives in the cohomology classes of the considered analytic spaces?

MSC:
32C15 Complex spaces
32C35 Analytic sheaves and cohomology groups
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ancona, V.; Gaveau, B.; Ancona, V.; Gaveau, B., Formes différentielles et résolutions de certains espaces analytiques, III, Bull. sci. math., Annali de matematica, 164, 175-202, (1994), Ser. IV · Zbl 0817.32006
[2] Ancona, V.; Gaveau, B., Le complexe de de Rham d’un espace analytique réduit, (), 1-26, Vieweg
[3] Ancona, V.; Gaveau, B., Théorèmes de de Rham sur un espace analytiue, Revue roumaine de math. pures et appliquées, 38, 579-594, (1993) · Zbl 0810.32009
[4] Deligne, P.; Deligne, P., Théorie de Hodge, III, Publ. math. IHES, Publ. math. IHES, 44, 6-77, (1975) · Zbl 0237.14003
[5] Fary, I., L’algèbre spectrale d’une application continue, Annals of math., 63, 437-490, (1956) · Zbl 0073.39804
[6] Fröhlicher, A., Relations between the cohomology groups of Dolbeault and topological invariants, (), 641-644
[7] Hodge, W., Theory and applications of harmonic integrals, (1935), Cambridge U. Press Cambridge
[8] Kodaïra, K.; Morrow, J., Complex manifolds, (1975), Holt Rinehart
[9] Leray, J., L’anneau spectral et l’anneau filtre de cohomologie d’un espace localement compact, J. math. pures et appliquées, 29, 1-139, (1950) · Zbl 0038.36301
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.