×

zbMATH — the first resource for mathematics

Irreducible components of rigid spaces. (English) Zbl 0928.32011
The paper introduces a theory of irreducible decomposition for rigid analytic varieties (over a field \(k\) complete with respect to a non-trivial non-archimedean norm). For affinoid varieties \(X=\text{Sp}A\), there is no problem in defining the irreducible components; they are just the closed analytic subsets defined by the minimal primes of \(A\). For global rigid analytic varieties, e.g., the zero-locus of a Fredholm series (see below), the definition is no longer obvious. A similar difficulty is found in complex analysis; however, two extra difficulties present themselves in the rigid case: the base field need not be algebraically closed and instead of a locally compact Hausdorff topology, we only have a Grothendieck topology. The main observation in the paper is that for a normal rigid analytic variety \(X\) (= all local rings are normal), we have that \(X\) is connected (= not the union of two disjoint proper admissible open sets, or, equivalently, the ring of global sections \(\Gamma(X,\mathcal O_X)\) has no non-trivial idempotents), if and only if, \(X\) is irreducible (= not the union of two proper closed analytic subsets). Therefore, the author defines the irreducible components of an arbitrary rigid analytic variety \(X\) to be the images under \(\pi\) of the connected components of \(\widetilde X\), where \(\pi:\widetilde X\to X\) is the normalization of \(X\). Such a normalization is shown to exist and to be unique up to isomorphism. The theory of irreducible components is then developed (behavior with respect to base change of the ground field, irreducible components of the analytification of a scheme of finite type over \(k\), etc.). In order to obtain these results, the author needs to resort to some commutative algebra. In particular, he shows that the local ring \(\mathcal O_{X,x}\) of a point \(x\) on a rigid analytic variety \(X\) is excellent. As an application, the paper presents an alternative treatment (and some partial extensions) of the work of Coleman and Mazur on Fredholm series, i.e., global sections (entire functions) on affine \(n\)-space \(\mathbf A_X^n=:\mathbf A_k^n\times_k X\) over a rigid analytic variety \(X\).

MSC:
32P05 Non-Archimedean analysis
32C18 Topology of analytic spaces
PDF BibTeX Cite
Full Text: DOI Numdam EuDML
References:
[1] R. BERGER et al., Differentialrechnung in der analytischen geometrie, Lecture Notes in Math 38, Springer-Verlag, New York, 1967. · Zbl 0163.03202
[2] P. BERTHELOT, Cohomologie rigide et cohomologie rigide à supports propres, preprint. · Zbl 0515.14015
[3] S. BOSCH, Orthonormalbasen in der nichtarchimedischen funktionentheorie, Manuscripta Mathematica, 1 (1969), 35-57. · Zbl 0164.21202
[4] S. BOSCH, U. GÜNZTER, R. REMMERT, Non-Archimedean analysis, Springer-Verlag, 1984.
[5] S. BOSCH, W. LÜTKEBOHMERT, Formal and rigid geometry I, Math. Annalen, 295 (1993), 291-317. · Zbl 0808.14017
[6] S. BOSCH, W. LÜTKEBOHMERT, Formal and rigid geometry II, Math. Annalen, 296 (1993), 403-429. · Zbl 0808.14018
[7] S. BOSCH, W. LÜTKEBOHMERT, Formal and rigid geometry III, Math. Annalen, 302 (1995), 1-29. · Zbl 0839.14013
[8] R. COLEMAN, B. MAZUR, The eigencurve, preprint. · Zbl 0932.11030
[9] J. DEJONG, Crystalline Dieudonné module theory via formal and rigid geometry, Publ. Math. IHES, 82 (1995), 5-96. · Zbl 0864.14009
[10] J. DIEUDONNÉ, A. GROTHENDIECK, Éléments de géométrie algébrique, Publ. Math. IHES, 4, 8, 11, 17, 20, 24, 28, 32 (1960-1967).
[11] H. GRAUERT, R. REMMERT, Coherent analytic sheaves, Springer-Verlag, Grundl. 265, 1984. · Zbl 0537.32001
[12] H. GRAUERT, R. REMMERT, The theory of Stein spaces, Springer-Verlag, Grundl. 236, 1979. · Zbl 0433.32007
[13] A. GROTHENDIECK, Revêtements étales et groupe fondamental, Lecture Notes in Math. 224, Springer-Verlag, NY, 1971. · Zbl 0234.14002
[14] R. KIEHL, Theorem A und theorem B in der nicharchimedischen funktionentheorie, Inv. Math., 2 (1967), 256-273. · Zbl 0202.20201
[15] R. KIEHL, Die analytische normalität affinoider ringe, Arch. der Math., 18 (1967), 479-484. · Zbl 0166.04401
[16] R. KIEHL, Ausgezeichnete ringe in der nichtarchimedischen analytischen geometrie, Journal für Mathematik, 234 (1969), 89-98. · Zbl 0169.36501
[17] M. KISIN, Local constancy in p-adic families of Galois representations, Math. Z., 230 (1999), 569-593. · Zbl 0932.32028
[18] U. KÖPF, Über eigentliche familien algebraischer varietäten über affinoiden Räumen, Schriftenreihe Math. Inst. Münster, 2. Serie. Heft 7, (1974). · Zbl 0275.14006
[19] W. LÜTKEBOHMERT, Der satz von remmert-Stein in der nicharchimedoschen funktionentheorie, Math. Z., 139 (1974), 69-84. · Zbl 0283.32022
[20] W. LÜTKEBOHMERT, Formal-algebraic and rigid-analytic geometry, Math. Annalen, 286 (1990), 341-371. · Zbl 0716.32022
[21] H. MATSUMURA, Commutative algebra 2nd ed., Benjamin Publishing Co., 1980. · Zbl 0441.13001
[22] H. MATSUMURA, Commutative ring theory, Cambridge Univ. Press, 1986. · Zbl 0603.13001
[23] P. VALABREGA, On the excellent property for power series rings over polynomial rings, J. Math. Kyoto Univ., 15-2 (1975), 387-395. · Zbl 0306.13011
[24] P. VALABREGA, A few theorems on completion of excellent rings, Nagoya Math. J., 61 (1976), 127-133. · Zbl 0319.13008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.