×

Perturbation analysis of orthogonal canonical forms. (English) Zbl 0928.93012

The authors study the sensitivity of orthogonal canonical forms for single-input single-output and multi-input multi-output linear controllable systems with respect to perturbations. Local linear and nonlocal nonlinear perturbation bounds are derived and the conditioning of orthogonal canonical forms is computed. Examples are provided.

MSC:

93B10 Canonical structure
93B40 Computational methods in systems theory (MSC2010)
93C73 Perturbations in control/observation systems
93B35 Sensitivity (robustness)

Software:

SLICE
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Denham, M. J., A software library and interactive design environment for computer aided control system design, (Computer-Aided Control System Engineering (1985), North Holland: North Holland Amsterdam), 301-314
[2] Golub, G. H.; Van Loan, C. F., Matrix Computations (1989), Johns Hopkins U.P: Johns Hopkins U.P Baltimore · Zbl 0733.65016
[3] Grebenikov, E. A.; Ryabov, Yu. A., Constructive Methods for Analysis of Nonlinear Systems (1979), Nauka: Nauka Moscow, (in Russian) · Zbl 0466.65041
[4] Hermann, R.; Martin, C. L., Application of algebraic geometry to systems theory. Part I, IEEE Trans. Automat. Control, 22, 19-25 (1977) · Zbl 0355.93013
[5] Higham, N. J., Optimization by direct search in matrix computations, SIAM J. Matrix Anal. Appl., 14, 317-333 (1993) · Zbl 0776.65047
[6] Hinrichsen, D.; Linnemann, A., Hermite-type canonical forms and the computation of dominant Hermite-indices for structured systems, Regelungstechnik, 32, 124-130 (1984) · Zbl 0534.93012
[7] Sun, J.-G., Componentwise perturbation bounds for some matrix decompositions, BIT, 32, 702-714 (1992) · Zbl 0764.65016
[8] Sun, J.-G., Perturbation Analysis of System Hessenberg and Hessenberg/Triangular Forms, (Report 94.02 (1994), Dept. of Computing Science, University of Umea: Dept. of Computing Science, University of Umea Sweden) · Zbl 0856.93063
[9] Kantorovich, L. V.; Akilov, G. P., Functional Analysis in Normed Spaces (1977), Nauka: Nauka Moscow, (in Russian) · Zbl 0127.06102
[10] Konstantinov, M. M.; Christov, N. D.; Petkov, P. Hr., Perturbation analysis of linear control problems, (Preprints of the 10-th IFAC Congress, Vol. 9 (1987)), 16-21, Munich · Zbl 0792.93053
[11] Konstantinov, M. M.; Petkov, P. Hr., Conditioning of Linear State Feedback, (Report 93-61 (1993), Dept. of Engineering, Leicester Univ: Dept. of Engineering, Leicester Univ U.K) · Zbl 1061.93038
[12] Konstantinov, M. M.; Petkov, P. Hr.; Christov, N. D., Synthesis of linear systems with desired equivalent form, J. Comput. Appl. Math., 6, 27-35 (1980) · Zbl 0439.93020
[13] Konstantinov, M. M.; Petkov, P. Hr.; Christov, N. D., Invariants and canonical forms for linear multivariable systems under the action of orthogonal transformation groups, Kybernetika, 17, 413-421 (1981) · Zbl 0474.93020
[14] Konstantinov, M. M.; Petkov, P. Hr.; Christov, N. D., Non-local perturbation analysis of the Schur system of a matrix, SIAM J. Matrix Anal. Appl., 15, 383-392 (1994) · Zbl 0798.15010
[15] Konstantinov, M. M.; Petkov, P. Hr.; Gu, D. W.; Postlethwaite, I., Two-Dimensional Measures and Perturbations Preserving Reachability, (Report 93-62 (1993), Dept. of Engineering, Leicester Univ: Dept. of Engineering, Leicester Univ U.K) · Zbl 0923.93006
[16] Konstantinov, M. M.; Petkov, P. Hr.; Gu, D. W.; Postlethwaite, I., Numerical Issues in Linear Control. Part I, (Report 93-65 (1993), Dept. of Engineering, Leicester Univ: Dept. of Engineering, Leicester Univ U.K) · Zbl 0923.93006
[17] Laub, A. J., Numerical linear algebra aspects of control design computations, IEEE Trans. Automat. Control, 30, 97-108 (1985) · Zbl 0551.93025
[18] Laub, A. J.; Linnemann, A., Hessenberg and Hessenberg/triangular forms in linear system theory, Internat. J. Control, 44, 1523-1547 (1986) · Zbl 0608.93017
[19] Laub, A. J.; Linnemann, A., Hessenberg forms in linear systems theory, (Byrnes, C.; Lindquist, A., Computational and Combinatorial Methods in Systems Theory (1986), North Holland: North Holland Amsterdam), 229-244 · Zbl 0605.93014
[20] Paige, C. C., Properties of numerical algorithms related to computing controllability, IEEE Trans. Automat. Control, 26, 130-138 (1981) · Zbl 0463.93024
[21] Petkov, P. Hr., Perturbation bounds for orthogonal canonical forms and numerical controllability analysis, IEEE Trans. Automat. Control, 38, 639-643 (1993) · Zbl 0777.93047
[22] Petkov, P. Hr.; Christov, N. D.; Konstantinov, M. M., Numerical analysis of the reduction of linear systems into orthogonal canonical form, Systems Control Lett., 7, 361-364 (1986) · Zbl 0606.93029
[23] Petkov, P. Hr.; Christov, N. D.; Konstantinov, M. M., Sensitivity of orthogonal canonical forms for single-input systems, (Proceedings of the 22nd Spring Conference of the Union of Bulgarian Mathematicians. Proceedings of the 22nd Spring Conference of the Union of Bulgarian Mathematicians, Sofia (1992)), 66-73 · Zbl 0474.93020
[24] Petkov, P. Hr.; Christov, N. D.; Konstantinov, M. M., Computational Methods for Linear Control Systems (1991), Prentice-Hall: Prentice-Hall Hemel Hempstead · Zbl 0790.93001
[25] Petkov, P. Hr.; Christov, N. D.; Konstantinov, M. M., Perturbation controllability analysis of linear multivariable systems, (Preprints of the IFAC 12th Congress, Sydney, Vol. 2 (1993)), 491-494 · Zbl 0424.93017
[26] Stewart, G. W., Perturbation bounds for the QR factorization of a matrix, SIAM J. Numer. Anal., 14, 509-518 (1977) · Zbl 0358.65038
[27] Stewart, G. W., On the perturbation of LU, Cholesky and QR factorizations, SIAM J. Matrix Anal. Appl., 14, 1141-1145 (1993) · Zbl 0785.65017
[28] Van Dooren, P., The generalized eigenstructure problem in linear system theory, IEEE Trans. Automat. Control, 26, 111-129 (1981) · Zbl 0462.93013
[29] Williams, T. W.C., Numerically Reliable Software for Control: The slice Library, (Report 85/1 (1985), Dept. of Computing, Kingston Polytechnic) · Zbl 0583.93014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.