×

zbMATH — the first resource for mathematics

Low-dimensional filiform Lie algebras. (English) Zbl 0929.17004
The authors classify the complex filiform Lie algebras of dimension less than or equal to 11. They use ideas developed by M. Vergne [Bull. Soc. Math. Fr. 98, 81-116 (1970; Zbl 0244.17011)] and J. M. Ancochea-Bermudez and M. Goze [Arch. Math. 50, 511-525 (1998; Zbl 0628.17005)]. It is shown that each such algebra is isomorphic to a law in a list of laws which, starting with dimension 3, has 1, 1, 2, 5, 8, 19, 38, 69, 110 entries as the dimension increases to 11.

MSC:
17B30 Solvable, nilpotent (super)algebras
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ancochea-Bermúdez, J.M.; Goze, M., Classification des algèbres de Lie filiformes de dimension 8, Arch. math., 50, 511-525, (1988) · Zbl 0628.17005
[2] Ancochea-Bermúdez, J.M.; Goze, M., Classification des algèbres de Lie nilpotentes de dimension 7, Arch. math., 52, 2, 157-185, (1989) · Zbl 0672.17005
[3] Ancochea-Bermúdez, J.M.; Goze, M., On the varietes of nilpotent Lie algebras of dimension 7 and 8, J. pure appl. algebra, 77, 131-140, (1992) · Zbl 0749.17007
[4] Boza, L.; Echarte, F.J.; Núñnez, J., Classification of complex filiform Lie algebras of dimension 10, Algebra groups geom., 11, 3, 253-276, (1994) · Zbl 0817.17012
[5] Bratzlavsky, F., Classification des algèbres de Lie nilpotentes de dimension n, de classe n − 1, dont l’idéal dérivé est commutatif, Acad. roy. belg. bull. cl. sci., 560, 858-865, (1974) · Zbl 0364.17007
[6] Cerezo, A., LES algèbres de Lie nilpotentes réelles et complexes de dimension 6, Preprint N. 27, (1983), Nice
[7] Dixmier, J., Sur LES representations unitaires des groupes de Lie nilpotents III, Canad. J. math., 10, 321-348, (1958) · Zbl 0100.32401
[8] Dixmier, J.; Lister, W.G., Derivations of nilpotent Lie algebras, (), 155-158 · Zbl 0079.04802
[9] Gómez, J.R.; Echarte, F.J., Classification of complex filiform nilpotent Lie algebras of dimension 9, (), 21-29, (1) · Zbl 0790.17004
[10] Gómez, J.R.; Goze, M.; Hakimjanov(Khakimdjanov), You.B., On the k-abelian filiform Lie algebras, Comm. algebra, 25, 2, 431-450, (1997) · Zbl 0866.17009
[11] Goze, M., Etude locale de la variété des lois d’algèbre de Lie, ()
[12] Goze, M.; Hakimjanov (Khakimdjanov), You.B., Nilpotent Lie algebras, (1996), Kluwers Academics Publishers Dordrecht
[13] Hakimjanov (Khakimdjanov), You.B., Variété des lois d’algèbres de Lie nilpotentes, Geom. dedicata, 40, 229-295, (1991)
[14] Morozov, V., Classification of nilpotent Lie algebras of sixth order, Izv. vyssh. uchebn. zaved. mat., 4, 5, 161-171, (1958) · Zbl 0198.05501
[15] Nielsen, O.A., Unitary representations and coadjoint orbits of low-dimensional nilpotent Lie groups, Quenn’s papers in pure appl. math., 63, (1983) · Zbl 0591.22004
[16] Romdhani, M., Classification of real and complex nilpotent Lie algebras of dimension 7, Linear and multilinear algebra, 24, 167-189, (1989) · Zbl 0708.17010
[17] Saffiullina, E.N., On the classification of nilpotent Lie algebras of dimension 7, (1976), (in Russian)
[18] Seeley, C., Seven-dimensional nilpotent Lie algebras over the complex numbers, Ph.D. thesis, (1988), Chicago
[19] Seeley, C., Degenations of 6-dimensional nilpotent Lie algebras on \(C\), Comm. algebra, 18, 10, 3493-3505, (1990) · Zbl 0709.17006
[20] Seeley, C., Some nilpotent Lie algebras of even dimension, Bull. austral. math. soc., 45, 71-77, (1992) · Zbl 0741.17005
[21] Umlauf, K.A., Über die zusammensetzung der endlichen continuierlichen transformationsgruppen insbesondere der gruppen vom range null, Thesis, (1891), Leipzig · JFM 24.0333.04
[22] Vergne, M., Variété des algèbres de Lie nilpotentes, Thèse, (1966), Paris · Zbl 0145.25902
[23] Vergne, M., Cohomologie des algèbres de Lie nilpotentes. application à l’étude de la variété des algèbres de Lie nilpotentes, Bull. soc. math. France, 98, 81-116, (1970) · Zbl 0244.17011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.