zbMATH — the first resource for mathematics

Capacity in abstract Hilbert spaces and applications to higher order differential operators. (English) Zbl 0929.47023
Summary: This paper introduces the notion of capacity in abstract Hilbert spaces. It is proved that the spectral shift of a selfadjoint operator which is subjected to a domain perturbation can be estimated in terms of this capacity. The results are finally applied to higher-order partial differential operators.

47F05 General theory of partial differential operators (should also be assigned at least one other classification number in Section 47-XX)
47B25 Linear symmetric and selfadjoint operators (unbounded)
46C99 Inner product spaces and their generalizations, Hilbert spaces
47A55 Perturbation theory of linear operators
Full Text: DOI
[1] Adams D. R., Function Spaces and Potential Theory, volume 314 of Grundlehren der Mathematischen. Wissensehaften (1995) · Zbl 0834.46021
[2] Agmon S. Elliptic Boundary Value Problens Van Nostrand Mathematical Studies 1965
[3] Davies E.B. LP spectral theory of higher order elliptic differential operator 1996
[4] Davies E.B. Uniformly elliptic operators with measurable coefficients 1997 · Zbl 0839.35034
[5] DOI: 10.1017/CBO9780511566158 · doi:10.1017/CBO9780511566158
[6] Demuth M. van Casteren J. Stochastic Spectral Theory for Selfadjoint Feller Operators Birkhauser Verlag 1998
[7] Demuth, M., McGillIvary, I. and Noll, A. 1977.Spectral Theory, Microlocal Analysis, Singular Manifolds, volume 14 of Advances in Partial Differential Equation, Edited by: Demuth, M., Schrohe, E., Schulze, B. W. and Sjostrand, J. 12–77. Berlin: Akademie Verlag.
[8] Fukushima M., Diriehlet Forms and Symmetric Markov Processes (1980)
[9] Fukushima M., Di,rich.let Forms and Syrnrnetric Markon Processes, volume 19 of Studies in Mathematic. (1994)
[10] Goelden H. W., operators. Math. Z 155 pp 239– (1977)
[11] Hormander L., The Analysis of Linear Partial Differential Operators 1. Grundlehren der mathema.tischen Wissensehaften. (1983)
[12] Hormander L., The (Analysis of Linear Partial Differential Operators II. Grundlehren der mathematischen Wissenschaften) (1983)
[13] DOI: 10.1002/cpa.3160020205 · Zbl 0035.34601 · doi:10.1002/cpa.3160020205
[14] Landkof. N. S., Foundations of Modern Potential Theory (1972) · Zbl 0253.31001
[15] Ma Z. M., Introduction to the Theory of (Non,Syrnm.etric) Dirichlet Forms (1992)
[16] DOI: 10.1006/jfan.1996.0085 · Zbl 0896.47017 · doi:10.1006/jfan.1996.0085
[17] Noll A., Differential Equations, Asymptotic Analysis and Mathematical Physic 100 pp 252– (1997)
[18] Reed M., Methods of Modern. Mathematical Physics II: Fourier Analysis. Selfadjointness (1975) · Zbl 0308.47002
[19] Schulze B.-W., volume 46 of Mathematische Lehrbucher and Monographien (1977)
[20] Simon B., Functional Integration and Quantum. Physics (1979) · Zbl 0434.28013
[21] Szuitman A. Brownian motion obstacles and random media 1997
[22] DOI: 10.1016/0022-247X(76)90112-8 · Zbl 0336.31005 · doi:10.1016/0022-247X(76)90112-8
[23] Van Casteren J. A., Generators of strongly sem.i.groups., volume 115 of Research. Notes in. Mathematics (1985) · Zbl 0576.47023
[24] Weidmann. J., Li.ncare Operatoren. in Hilbertraumen (1976)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.