×

zbMATH — the first resource for mathematics

Minimax estimation of sharp change points. (English) Zbl 0929.62039
Summary: We define the sharp change point problem as an extension of earlier problems in change point analysis related to nonparametric regression. As particular cases, these include estimation of jump points in smooth curves. More generally, we give a systematic treatment of the correct rate of convergence for estimating the position of a “cusp” of an arbitrary order. We propose a test function for the local regularity of a signal that characterizes such a point as a global maximum.
In the sample implementation of our method, from observations of the signal at discrete time positions \(i/n\), \(i=1,\dots,n\), we use a wavelet transformation to approximate the position of the change point in the no-noise case. We study the noise effect, in the worst case scenario over a wide class of functions having a unique irregularity of “order \(\alpha\)” and propose a sequence of estimators which converge at the rate \(n^{1/(1+2\alpha)}\), as \(n\) tends to infinity. Finally we analyze the likelihood ratio of the problem and show that this is actually the minimax rate of convergence. Examples of thresholding empirical wavelet coefficients to estimate the position of sharp change points are also presented.

MSC:
62G05 Nonparametric estimation
62G08 Nonparametric regression and quantile regression
62C20 Minimax procedures in statistical decision theory
65C60 Computational problems in statistics (MSC2010)
Software:
wavethresh
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Carlstein, H. G., M üller, D. and Siegmund, D. (1994). Change Points Problems. IMS, Hay ward, CA. · Zbl 0942.00037
[2] Daubechies, I. (1992). Ten Lectures on Wavelets. SIAM, Philadelphia. · Zbl 0776.42018
[3] Darkovski, B. S. (1976). A nonparametric method for a posteriori detection of the ”disorder” time of a sequence of independent random variables. Theory Probab. Appl. 21 178-183. · Zbl 0397.62024
[4] Donoho, D. L. and Johnstone, I. M. (1994). Ideal spatial adaptation by wavelet shrinkage. Biometrika 81 425-455. JSTOR: · Zbl 0815.62019
[5] D ümbgen, L. (1991). The asy mptotic behaviour of some nonparametric change points estimators. Ann. Statist. 19 1471-1495. · Zbl 0776.62032
[6] Freidlin, M. I. and Korostelev, A. P. (1995). Image processing for growing domains: change points problems for domain’s area. Problems Inform. Transmission 31 33-35. (In Russian.) · Zbl 0897.62107
[7] Hinkley, D. V. (1970). Inference about a change point in a sequence of random variables. Biometrika 57 41-58. JSTOR: · Zbl 0198.51501
[8] Ibragimov, I. A. and Khas’minskii, R. Z. (1981). Statistic Estimation, Asy mptotic Theory. Springer, Berlin.
[9] Jaffard, S. (1989). Exposants de Hölder en des points donnés et coefficients d’ondelettes. C.R. Acad. Sci. Paris Sér. I Math 308 79-81. · Zbl 0665.42012
[10] Korostelev, A. P. (1987). Minimax estimation of a discontinuous signal. Theory Probab. Appl. 32 727-730. · Zbl 0659.62103
[11] Korostelev, A. P. and Tsy bakov, A. B. (1993). Minimax theory of image reconstruction and change points. Springer, Berlin. · Zbl 0833.62039
[12] Mallat, S. G. (1989). A theory for multi-resolution signal decomposition: the wavelet representation. IEEE Transactions on Pattern Analy sis and Machine Intelligence 11 674-693. · Zbl 0709.94650
[13] M üller, H. G. (1992). Change points in nonparametric regression analysis. Ann. Statist. 20 737- 761. · Zbl 0783.62032
[14] Nason, G. P. and Silverman, B. W. (1994). The discrete wavelet transform in S. J. Comput. Graph. Statist. 3 163-191.
[15] Neumann, M. H. (1995). Optimal change points estimation in inverse problem. Preprint 163, Weierstrass-Institut f ür Angewandte Analy sis und Stochastik, Berlin.
[16] Wang, Y. (1995). Jump and sharp cusp detection by wavelets. Biometrika 82 385-397. JSTOR: · Zbl 0824.62031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.