×

Some probability inequalities for ordered MTP\(_2\) random variables: a proof of the Simes conjecture. (English) Zbl 0929.62065

Summary: Some new probability inequalities involving the ordered components of a multivariate totally positive of order 2 \((\text{MTP}_2)\) random vector are derived, which provide an analytical proof of an important conjecture in the field of multiple hypothesis testing. This conjecture of R. J. Simes [Biometrika 73, 751-754 (1986; Zbl 0613.62067)] has been mostly validated so far using simulation.

MSC:

62H15 Hypothesis testing in multivariate analysis
60E15 Inequalities; stochastic orderings
62H99 Multivariate analysis

Citations:

Zbl 0613.62067
Full Text: DOI

References:

[1] Dunnett, C. W. and Sobel, M. (1954). A bivariate generalization of Student’s t distribution with tables for certain cases. Biometrika 41 153-169. JSTOR: · Zbl 0056.36703 · doi:10.1093/biomet/41.1-2.153
[2] Dy kstra, R. L. and Hewett, J. E. (1978). Positive dependence of the roots of a Wishart matrix. Ann. Statist. 6 235-238. · Zbl 0377.62036 · doi:10.1214/aos/1176344083
[3] Glaz, J. and Johnson, B. M. (1984). Probability inequalities for multivariate distributions with dependence structures. J. Amer. Statist. Assoc. 79 436-440. JSTOR: · Zbl 0546.62024 · doi:10.2307/2288287
[4] Hochberg, Y. (1988). A sharper Bonferroni procedure for multiple tests of significance. Biometrika 75 800-802. JSTOR: · Zbl 0661.62067 · doi:10.1093/biomet/75.4.800
[5] Hochberg, Y. and Rom, D. M. (1995). Extensions of multiple testing procedures based on Simes’ test. J. Statist. Plann. Inference 48 141-152. · Zbl 0851.62054 · doi:10.1016/0378-3758(95)00005-T
[6] Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scand. J. Statist. 6 65-70. · Zbl 0402.62058
[7] Hommel, G. (1988). A stagewise rejective multiple test procedure based on a modified test procedure. Biometrika 75 383-386. · Zbl 0639.62025 · doi:10.1093/biomet/75.2.383
[8] Hommel, G. (1989). A comparison of two modified Bonferroni procedures. Biometrika 76 624-625. JSTOR: · Zbl 0676.62028 · doi:10.1093/biomet/76.3.624
[9] Johnson, N. L. and Kotz, S. (1972). Distributions in Statistics: Continuous Multivariate Distributions. Wiley, New York. · Zbl 0248.62021
[10] Karlin, S. (1968). Total Positivity. Stanford Univ. Press. Karlin, S. and Rinott, Y. (1980a). Classes of orderings of measures and related correlation inequalities I. Multivariate totally positive distributions. J. Multivariate Anal. 10 467-498. Karlin, S. and Rinott, Y. (1980b). Classes of orderings of measures and related correlation inequalities II. Multivariate reverse rule distributions. J. Multivariate Anal. 10 499- 516. · Zbl 0469.60006
[11] Karlin, S. and Rinott, Y. (1981). Total positivity properties of absolute value multinormal variables with applications to confidence interval estimates and related probabilistic inequalities. Ann. Statist. 9 1035-1049. · Zbl 0477.62035 · doi:10.1214/aos/1176345583
[12] Liu, W. (1996). Multiple tests of a non-heirarchical finite family of hy potheses. J. Roy. Statist. Soc. Ser. B 58 455-461. JSTOR: · Zbl 0853.62054
[13] Perlman, M. D. and Olkin, I. (1980). Unbiasedness of invariant tests for MANOVA and other multivariate problems. Ann. Statist. 8 1326-1341. · Zbl 0465.62046 · doi:10.1214/aos/1176345204
[14] Rom, D. M. (1990). A sequentially rejective test procedure based on a modified Bonferroni inequality. Biometrika 77 663-665. JSTOR: · doi:10.1093/biomet/77.3.663
[15] Samuel-Cahn, E. (1996). Is the Simes improved Bonferroni procedure conservative? Biometrika 83 928-933. JSTOR: · Zbl 0885.62020 · doi:10.1093/biomet/83.4.928
[16] Sarkar, S. K. and Chang, C.-K. (1997). The Simes method for multiple hy pothesis testing with positively dependent test statistics. J. Amer. Statist. Assoc. 92 1601-1608. JSTOR: · Zbl 0912.62079 · doi:10.2307/2965431
[17] Sarkar, S. K. and Smith, W. (1986). Probability inequalities for ordered MTP2 random variables. Sankhy\?a Ser. A 48 119-135. · Zbl 0605.62051
[18] Simes, R. J. (1986). An improved Bonferroni procedure for multiple tests of significance. Biometrika 73 751-754. JSTOR: · Zbl 0613.62067 · doi:10.1093/biomet/73.3.751
[19] Tong, Y. L. (1980). Probability Inequalities in Multivariate Distributions. Academic Press, New York. · Zbl 0455.60003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.