Müller, Christine Optimum robust testing in linear models. (English) Zbl 0929.62080 Ann. Stat. 26, No. 3, 1126-1146 (1998). Summary: Robust tests for linear models are derived via Wald-type tests that are based on asymptotically linear estimators. For a robustness criterion, the maximum asymptotic bias of the level of the test for distributions in a shrinking contamination neighborhood is used. By also regarding the asymptotic power of the test, admissible robust tests and most-efficient robust tests are derived. For the greatest efficiency, the determinant of the covariance matrix of the underlying estimator is minimized. Also, most-robust tests are derived.It is shown that at the classical \(D\)-optimal designs, the most-robust tests and the most-efficient robust tests have a very simple form. Moreover, the \(D\)-optimal designs provide the highest robustness and the highest efficiency under robustness constraints across all designs. So, \(D\)-optimal designs are also the optimal designs for robust testing. Two examples are considered for which the most-robust tests and the most-efficient robust tests are given. Cited in 2 Documents MSC: 62K05 Optimal statistical designs 62F35 Robustness and adaptive procedures (parametric inference) 62J05 Linear regression; mixed models 62J10 Analysis of variance and covariance (ANOVA) Keywords:shrinking contamination; asymptotically linear estimators; bias of level; most robustness; efficiency; D-optimality; linear models; robust tests × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Akritas, M. G. (1991). Robust M estimation in the two-sample problem. J. Amer. Statist. Assoc. 86 201-204. JSTOR: · doi:10.2307/2289731 [2] Bickel, P. J. (1981). Quelque aspects de la statistique robuste. École d’ Été de Probabilités de St. Flour. Lecture Notes in Math. 876 1-72. Springer, Berlin. · Zbl 0484.62053 [3] Bickel, P. J. (1984). Robust regression based on infinitesimal neighborhoods. Ann. Statist. 12 1349-1368. · Zbl 0567.62051 · doi:10.1214/aos/1176346796 [4] Christensen, R. (1987). Plane Answers to Complex Questions-The Theory of Linear Models. Springer, New York. · Zbl 0645.62076 [5] Coakley, C. W. and Hettmansperger, T. P. (1992). Breakdown bounds and expected resistance. J. Nonparametr. Statist. 1 267-276. · Zbl 1284.62210 · doi:10.1080/10485259208832529 [6] Coakley, C. W. and Hettmansperger, T. P. (1994). The maximum resistance of tests. Austral. J. Statist. 36 225-233. · Zbl 0829.62040 · doi:10.1111/j.1467-842X.1994.tb00864.x [7] Hájek, J. and Sidák, Z. (1967). Theory of Rank Tests. Academic Press, New York. · Zbl 0161.38102 [8] Hampel, F. R. (1978). Optimally bounding the gross-error-sensitivity and the influence of position in factor space. In Proceedings of the Amer. Statist. Assoc. Statistical Computing Section 59-64. ASA, Washington, DC. [9] Hampel, F. R., Ronchetti, E. M., Rousseeuw, P. J. and Stahel, W. A. (1986). Robust StatisticsThe Approach Based on Influence Functions. Wiley, New York. · Zbl 0593.62027 [10] Heritier, S. and Ronchetti, E. (1994). Robust bounded-influence tests in general parametric models. J. Amer. Statist. Assoc. 89 897-904. JSTOR: · Zbl 0804.62037 · doi:10.2307/2290914 [11] Kiefer, J. (1974). General equivalence theory for optimum designs (approximate theory). Ann. Statist. 2 849-879. · Zbl 0291.62093 · doi:10.1214/aos/1176342810 [12] Kiefer, J. and Wolfowitz, J. (1960). The equivalence of two extremum problems. Canad. J. Math. 12 363-366. · Zbl 0093.15602 · doi:10.4153/CJM-1960-030-4 [13] Krasker, W. S. (1980). Estimation in linear regression models with disparate data points. Econometrica 48 1333-1346. JSTOR: · Zbl 0467.62096 · doi:10.2307/1912810 [14] Krasker, W. S. and Welsch, R. E. (1982). Efficient bounded-influence regression estimation. J. Amer. Statist. Assoc. 77 595-604. JSTOR: · Zbl 0501.62062 · doi:10.2307/2287719 [15] Kurotschka, V. and M üller, C. H. (1992). Optimum robust estimation of linear aspects in conditionally contaminated linear models. Ann. Statist. 20 331-350. · Zbl 0792.62024 · doi:10.1214/aos/1176348525 [16] Markatou, M. and He, X. (1994). Bounded influence and high breakdown point testing procedures in linear models. J. Amer. Statist. Assoc. 89 543-549. JSTOR: · Zbl 0799.62034 · doi:10.2307/2290857 [17] Markatou, M. and Hettmansperger, T. P. (1990). Robust bounded-influence tests in linear models. J. Amer. Statist. Assoc. 85 187-190. JSTOR: · Zbl 0712.62029 · doi:10.2307/2289543 [18] Markatou, M. and Manos, G. (1996). Robust tests in nonlinear regression models. J. Statist. Plann. Inference 55 205-217. · Zbl 0857.62027 · doi:10.1016/0378-3758(95)00194-8 [19] Markatou, M., Stahel, W. A. and Ronchetti, E. (1991). Robust M-ty pe testing procedures for linear models. In Directions in Robust Statistics and Diagnostics I (W. Stahel and S. Weisberg, eds.) 201-220. Springer, New York. · Zbl 0735.62035 [20] M üller, C. H. (1987). Optimale Versuchspläne f ür robuste Schätzfunktionen in linearen Modellen. Ph.D. thesis. Freie Univ. Berlin. M üller, C. H. (1992a). L1-estimation and testing in conditionally contaminated linear models. In L1-Statistical Analy sis and Related Methods (Y. Dodge, ed.) 69-76. North-Holland, Amsterdam. M üller, C. H. (1992b). Robust estimation with minimum bias and A-optimal designs. In PROBASTAT’91, Proceedings of the International Conference on Probability and Mathematical Statistics, Bratislava 1991 (A. Pázman and J. Volaufová, eds.) 109-115. M üller, C. H. (1992c). Robust testing in conditionally contaminated linear models. Preprint No. A-92-12, Fachbereich Mathematik und Informatik, Freie Univ. Berlin. M üller, C. H. (1994a). Optimal designs for robust estimation in conditionally contaminated linear models. J. Statist. Plann. Inference 38 125-140. M üller, C. H. (1994b). One-step-M-estimators in conditionally contaminated linear models. Statist. Decisions 12 331-342. · Zbl 0949.47013 [21] M üller, C. H. (1995). Outlier robust inference for planned experiments. Habilitation thesis. Freie Univ. Berlin. [22] M üller, C. H. (1997). Robust Planning and Analy sis of Experiments. Lecture Notes in Statist. 124. Springer, New York. [23] Pázman, A. (1986). Foundations of Optimum Experimental Design. Reidel, Dordrecht. · Zbl 0588.62117 [24] Pukelsheim, F. (1993). Optimal Design of Experiments. Wiley, New York. · Zbl 0834.62068 [25] Rieder, H. (1985). Robust estimation of functionals. Technical Report, Univ. Bay reuth. [26] Rieder, H. (1987). Robust regression estimators and their least favorable contamination curves. Statist. Decisions 5 307-336. · Zbl 0631.62035 [27] Rieder, H. (1994). Robust Asy mptotic Statistics. Springer, New York. · Zbl 0927.62050 [28] Ronchetti, E. (1982). Robust testing in linear models: the infinitesimal approach. Ph.D. thesis, Swiss Federal Institute of Technology, Z ürich. · Zbl 0501.62022 [29] Ronchetti, E. and Rousseeuw, P. J. (1985). Change-of-variance sensitivities in regression analysis. Z. Wahrsch. Verw. Gebiete 68 503-519. Silvapulle, M. J. (1992a). Robust Wald-ty pe tests of one-sided hy pothesis in the linear model. J. Amer. Statist. Assoc. 87 156-161. Silvapulle, M. J. (1992b). Robust tests of inequality constraints and one-sided hy potheses in the linear model. Biometrika 79 621-630. · Zbl 0539.62042 · doi:10.1007/BF00535342 [30] Staudte, R. G. and Sheather, S. J. (1990). Robust Estimation and Testing. Wiley, New York. · Zbl 0706.62037 [31] Wald, A. (1943). Tests of statistical hy pothesis concerning several parameters when the number of observations is large. Trans. Amer. Math. Soc. 3 426-482. JSTOR: · Zbl 0063.08120 · doi:10.2307/1990256 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.