×

zbMATH — the first resource for mathematics

Zur Homotopietheorie der Kettenkomplexe. (German) Zbl 0093.36903

Keywords:
topology
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Adams, J. F.: On the structure and applications of the Steenrod algebra. Comment. Math. Helv.32, 180-214 (1958). · Zbl 0083.17802
[2] Bourbaki, N.: Séminaire Mai 1957, Exposé deA. Grothendieck sur Théorèmes de dualités pour les faisceaux algébriques cohérents.
[3] Cartan, H., andS. Eilenberg: Homological Algebra. Princeton Math. Ser. 19. · Zbl 0933.18001
[4] Dold, A.: Homology of symmetric products and other functors of complexes. Ann. Math.68, 54-80 (1958). · Zbl 0082.37701
[5] Eilenberg, S., andS. MacLane: On the groupsH (?,n). III. Ann. Math.60, 513-557 (1954). · Zbl 0057.15302
[6] Eilenberg, S., andN. Steenrod: Foundations of Algebraic Topology. Princeton Math. Ser. 15. · Zbl 0047.41402
[7] Godement, R.: Théorie des faisceaux. Hermann: Paris 1958. · Zbl 0080.16201
[8] Grothendieck, A.: Séminaire 1957 (hektographiert).
[9] Moore, J. C.: Semi-simplicial complexes and Postnikov systems. Sympos. Internac. de Topologia Algebr., Mexiko 1958. · Zbl 0089.18001
[10] Puppe, D.: Homotopiemengen und ihre induzierten Abbildungen. I. Math. Z.69, 299-344 (1958). · Zbl 0092.39803
[11] Serre, J.-P.: Cohomologie modulo 2 des complexes d’Eilenberg-MacLane. Comment. Math. Helv.27, 198-231 (1953). · Zbl 0052.19501
[12] Spanier, E.: Infinite symmetric products, function spaces, and duality. Ann. Math.69, 142-198 (1959). · Zbl 0086.37401
[13] Steenrod, N.: Cohomology operations and obstructions to extending continuous functions. Colloquium lectures. Princeton 1957 (hektographiert). · Zbl 0122.41404
[14] Whitehead, J. H. C.: Combinatorial Homotopy. I. Bull. Amer. Math. Soc.55, 213-245 (1949). · Zbl 0040.38704
[15] Yoneda, N.: On the homology theory of modules. J. Fac. Sci. Univ. Tokyo Sect. I. Vol.7, 193-227 (1954). · Zbl 0058.01902
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.