## On boundary value problems for systems of linear functional-differential equations.(English)Zbl 0930.34047

The authors consider the linear system (1) $$\dot {x}(t)=p(x)(t)+q(t),$$ (2) $$\ell (x)=c_0,$$ with $$q\in L^1([a,b],\mathbb{R}^n),$$ $$c_0\in \mathbb{R}^n,$$ $$p: C([a,b],\mathbb{R}^n)\to L^1([a,b],\mathbb{R}^n)$$ and $$\ell : C([a,b],\mathbb{R}^n)\to \mathbb{R}^n$$ are linear bounded operators such that there is $$\eta \in L^1([a,b],\mathbb{R})$$ such that $$\|p(x)(t)\|\leq \eta (t)\|x\|_C$$ holds for all $$t\in [a,b]$$ and $$x\in C([a,b],\mathbb{R}^n).$$ For a given positive integer $$k,$$ a nonnegative integer $$m$$ and fixed $$t_0\in [a,b]$$ arbitrarily chosen, they define $$p^m(x)(t)=\int_{t_0}^t p(p^{m-1}(x))(s)\text{d}s$$ (where $$p^0(x)(t)\equiv x(t)$$) and $$\Lambda_k= \ell (p^0(E)+\dots +p^{k-1}(E))$$ (where $$E$$ is the unit matrix). Moreover, if $$\det (\Lambda_k)\neq 0,$$ they put $$p^{k,0}(x)(t)=x(t)$$ and $$p^{k,m}(x)(t)=p^m(x)(t) - [p^0(E)(t)+\dots +p^{m-1}(E)(t)] \Lambda_k^{-1}.$$ One of the main results is the following theorem on existence and uniqueness of a solution to (1),(2):
If there exist positive integers $$k$$ and $$m,$$ a nonnegative integer $$m_0$$ and a matrix $$A=(a_{i j})\in \mathbb{R}^{n\times n}$$ such that $$r(A)<1$$ holds for its spectral radius, $$\det (\Lambda_k)\neq 0$$ and $$\|p_i^{k,m}(x)\|_C\leq \sum_{j=1}^{n} a_{i j} \|p_j^{k,m_0}(x)\|_C$$ holds for any component $$p_i^{k,m}(x),$$ $$i=1,\dots ,n,$$ of the vector-valued function $$p^{k,m}(x),$$ then the given problem (1),(2) possesses a unique solution for any $$q\in L^1([a,b],\mathbb{R}^n)$$ and any $$c_0\in \mathbb{R}^n.$$
As corollaries several efficient criteria for the unique solvability of the given problem are obtained. In the case that $$p$$ is a Volterra operator, necessary conditions for the unique solvability are given. Furthermore, theorems concerning continuous dependence of the solution on the coefficients are proved and applications to various boundary value problems for systems of the form $$\dot {x}(t)=P(t)x(\tau (t))+q(t)$$ are given.
Reviewer: M.Tvrdý (Praha)

### MSC:

 34K10 Boundary value problems for functional-differential equations
Full Text:

### References:

  N.V. Azbelev, V.P. Maksimov and L.F. Rakhmatullina: Introduction to the Theory of Functional Differential Equations. Nauka, Moscow, 1991. · Zbl 0725.34071  S.R. Bernfeld and V. Lakshmikantham: An Introduction to Nonlinear Boundary Value Problems. Academic Press, Inc., New York and London, 1974. · Zbl 0286.34018  E.A. Coddington and N. Levinson: Theory of Ordinary Differential Equations. McGraw-Hill Book Company, Inc., New York Toronto London, 1955. · Zbl 0064.33002  R. Conti: Recent trends in the theory of boundary value problems for ordinary differential equations. Boll. Unione mat. ital. 22 (1967), 135-178. · Zbl 0154.09101  R. Conti: Problémes lineaires pour les equations differentielles ordinaires. Math. Nachr. 23 (1961), 161-178. · Zbl 0107.28803  S.M. Gelashvili: On a boundary value problem for systems of functional differential equations. Arch. Math. (Brno) 20 (1964), 157-168. · Zbl 0583.34054  J. Hale: Theory of Functional Differential Equations. Springer-Verlag, New York Heidelberg Berlin, 1977. · Zbl 1092.34500  G.H. Hardy, J.E. Littlewood and G. Pólya: Inequalities. Cambridge Univ. Press, Cambridge, 1934. · JFM 60.0169.01  P. Hartman: Ordinary Differential Equations. John Wiley, New York, 1964. · Zbl 0125.32102  L.V. Kantorovič, B.Z. Vulich and A.G. Pinsker: Functional Analysis in Semiordered Spaces. GITTL, Leningrad, 1950.  I. Kiguradze: Some Singular Boundary Value Problems for Ordinary Differential Equations. Tbilisi Univ. Press, Tbilisi, 1975.  I. Kiguradze: Boundary value problems for systems of ordinary differential equations. Current problems in mathematics. Newest results, Vol. 30, 3-103, Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Vses. Inst. Nauchn. i Tekh. Inform., Moscow (1978).  T. Kiguradze: Some boundary value problems for systems of linear differential equations of hyperbolic type. Memoirs on Diff. Eq. and Math. Physics 1 (1994), 1-144. · Zbl 0819.35003  J. Kurzweil: Generalized ordinary differential equations and continuous dependence on a parameter. Czechoslovak Math. J. 7 (1957), 418-449. · Zbl 0090.30002  J. Kurzweil and Z. Vorel: Continuous dependence of solutions of differential equations on a parameter. Czechoslovak Math. J. 7 (1957), 568-583. · Zbl 0090.30001  L.A. Ljusternik and V.I. Sobolev: Elements of Functional Analysis. Nauka, Moscow, 1965.  Z. Opial: Continuous parameter dependence in linear systems of differential equations. J. Diff. Eqs. 3 (1967), 571-579. · Zbl 0219.34004  Z. Opial: Linear problems for systems of nonlinear differential equations. J. Diff. Eqs. 3 (1967), 580-594. · Zbl 0161.06102  Š. Schwabik, M. Tvrdý and O. Vejvoda: Differential and Integral Equations: Boundary Value Problems and Adjoints. Academia, Praha, 1979. · Zbl 0417.45001  R.A. Tsitskishvili: Unique solvability and correctness of a linear boundary value problem for functional-differential equations. Rep. Enlarged Sessions Sem. I.N. Vekua Inst. Appl. Math. 5 (1990), no. 3, 195-198.  N.I. Vasiljev and J.A. Klokov: Foundations of the Theory of Boundary Value Problems for Ordinary Differential Equations. Zinatne, Riga, 1978.  Z. Vorel: Continuous dependence of parameters. Nonlinear. Anal. Theory Meth. and Appl. 5 (1981), no. 4, 373-380. · Zbl 0462.34046  W. Walter: Differential and Integral Inequalities. Springer-Verlag, Berlin Heidelberg New York, 1970. · Zbl 0252.35005  W.M. Whyburn: Differential equations with general boundary conditions. Bull. Am. Math. Soc. 48 (1942), 691-704. · Zbl 0061.17904
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.