zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Poisson geometry. (English) Zbl 0930.37032
This is a state-of-the-art survey, written by one of the leaders of the field. First, the local structure is described, with emphasis on linear, quadratic structures and their perturbations. Then the advances in global problems are reviewed, beginning with a general programme in section 4. Homology and cohomology studies, which began with Lichnerowicz in 1977, are an active area of research. Completeness issues are discussed in section 6, with conjectures about the interplay between completeness and the geometry of the symplectic leaves. Poisson groupoids and their actions are reviewed in sections 7, 8; modular groupoids theory in sections 9, 10. In sections 11, 12, the author offers research ideas and open problems (as usual in his papers). A caveat about possible omissions in the literature should not be taken seriously. For instance, even nonholonomic brackets (where the Jacobi identity is not satisfied) are mentioned and encouragement given for their study.

MSC:
37J05Relations of dynamical systems with symplectic geometry and topology
37-02Research exposition (dynamical systems and ergodic theory)
37J60Nonholonomic dynamical systems
58H05Pseudogroups and differentiable groupoids on manifolds
53D17Poisson manifolds; Poisson groupoids and algebroids
53C30Homogeneous manifolds (differential geometry)
WorldCat.org
Full Text: DOI
References:
[1] Alekseev, A. Y.: On Poisson actions of compact Lie groups on symplectic manifolds. J. diff. Geom. 45, 241-256 (1997) · Zbl 0912.53018
[2] Alexandrov, M.; Schwarz, A.; Zaboronsky, O.; Kontsevich, M.: The geometry of the master equation and topological quantum field theory. Int. J. Mod. phys. A 12, 1405-1429 (1997) · Zbl 1073.81655
[3] Almeida, R.; Molino, P.: Suites d’atiyah et feuilletages transversalement complets. CR acad. Sci. Paris 300, 13-15 (1985) · Zbl 0582.57015
[4] Abraham, R.; Marsden, J. E.; Ratiu, T.: Manifolds, tensor analysis, and applications. (1983) · Zbl 0508.58001
[5] Arnol’d, V. I.: Small denominators III. Small denominators and problems of stability of motion in classical and celestial mechanics. Russ. math. Surveys 18, No. 6, 85-191 (1963) · Zbl 0135.42701
[6] Arnold, V. I.: Mathematical methods of classical mechanics. Graduate texts in math. 60 (1989)
[7] Atiyah, M. F.: Convexity and commuting Hamiltonians. Bull. London math. Soc. 14, 1-15 (1982) · Zbl 0482.58013
[8] Balinsky, A.; Burman, Yu.: Quadratic Poisson brackets and the Drinfeld theory for associative algebras. Lett. math. Phys. 38, 63-75 (1996) · Zbl 0857.16034
[9] Basart, H.; Flato, M.; Lichnerowicz, A.; Sternheimer, D.: Deformation theory applied to quantization and statistical mechanics. Lett. math. Phys. 8, 483-494 (1984) · Zbl 0567.58011
[10] Beffa, G. M.: A transverse structure for the Lie-Poisson bracket on the dual of the Virasoro algebra. Pacific J. Math. 163, 43-72 (1994) · Zbl 0790.58017
[11] Berezin, F. A.: Some remarks about the associated envelope of a Lie algebra. Funct. anal. Appl. 1, 91-102 (1967) · Zbl 0227.22020
[12] Berger, R.: Géométrie algébrique de Poisson. CR acad. Sci. Paris sér. A 289, 583-585 (1979)
[13] Bhaskara, K. H.; Viswanath, K.: Poisson algebras and Poisson manifolds. Pitman research notes in mathematics (1988) · Zbl 0671.58001
[14] Bkouche, R.: Idéaux mous d’un anneau commutatif. Applications aux anneaux de fonctions. CR acad. Sci. Paris 260, 6496-6498 (1965) · Zbl 0142.28901
[15] Block, J.; Getzler, E.: Quantization of foliations. Proceedings of the xxth international conference on differential geometric methods in theoretical physics, New York, 1991 1, 471-487 (1992) · Zbl 0812.58028
[16] Brylinski, J. -L.: A differential complex for Poisson manifolds. J. diff. Geom. 28, 93-114 (1988) · Zbl 0634.58029
[17] Cahen, M.; Gutt, S.; Rawnsley, J.: Nonlinearizability of the Iwasawa Poisson Lie structure. Lett. math. Phys. 24, 79-83 (1992) · Zbl 0756.58015
[18] A. Cannas da Silva, K. Hartshorn and A. Weinstein, Lectures on Geometric Models for Noncommutative Algebras (in preparation), available at http://math.berkeley.edu/ alanw.
[19] Cantrijn, F.; Ibort, L. A.: Introduction to Poisson supermanifolds. Diff. geom. Appl. 1, 133-152 (1991) · Zbl 0782.58010
[20] Chi, Q. -S.; Merkulov, S. A.; Schwachhöfer, L. J.: On the existence of an infinite series of exotic holonomies. Invent. math. 126, 391-411 (1996) · Zbl 0866.53013
[21] Conn, J. F.: Normal forms for analytic Poisson structures. Annals of math. 119, 576-601 (1984) · Zbl 0553.58004
[22] Conn, J. F.: Normal forms for smooth Poisson structures. Annals of math. 121, 565-593 (1985) · Zbl 0592.58025
[23] Connes, A.: Noncommutative geometry. (1994)
[24] Coste, A.; Dazord, P.; Weinstein, A.: Groupoïdes symplectiques. Pub. dep. Mathématiques, univ. Claude bernard-Lyon I 2/A, 1-62 (1987)
[25] Courant, T. J.: Dirac manifolds. Trans. AMS 319, 631-661 (1990) · Zbl 0850.70212
[26] Damianou, P. A.: Transverse Poisson structures of coadjoint orbits. Bull. sci. Math. 120, 195-214 (1996) · Zbl 0853.58048
[27] Dazord, P.: Groupoïdes symplectiques et troisième théorème de Lie ”non linéaire,”. Lect. notes in math. 1416, 39-74 (1990)
[28] Dazord, P.; Lichnerowicz, A.; Marle, C. -M.: Structure locale des variétés de Jacobi. J. math. Pures appl. 70, 101-152 (1991) · Zbl 0659.53033
[29] Drinfel’d, V. G.: Hamiltonian structures on Lie groups, Lie bialgebras, and the geometric meaning of the classical Yang-Baxter equations. Soviet math. Dokl. 27, 68-71 (1983)
[30] Drinfel’d, V. G.: On some unsolved problems in quantum group theory. Lecture notes in math. 1510, 1-8 (1992)
[31] Drinfel’d, V. G.: On Poisson homogeneous spaces of Poisson-Lie groups. Theor. math. Phys. 95, 524-525 (1993)
[32] Dufour, J. -P.: Linéarisation de certaines structures de Poisson. J. diff. Geom. 32, 415-428 (1990) · Zbl 0728.58011
[33] Dufour, J. -P.: Quadratisation de structures de Poisson a partie quadratique diagonale. Séminaire gaston Darboux de géométrie et topologie différentielle, 10-13 (1994)
[34] Dufour, J. -P.; Haraki, A.: Rotationnels et structures de Poisson quadratiques. CR acad. Sci. Paris 312, 137-140 (1991) · Zbl 0719.58001
[35] Duistermaat, J. J.; Heckman, G. J.: On the variation in the cohomology of the symplectic form of the reduced phase space. Invent. math. 69, 259-268 (1982) · Zbl 0503.58015
[36] Egilsson, A. S.: On embedding the 1 : 1 : 2 resonance space in a Poisson manifold. Electron. res. Announc. amer. Math. soc. 1, No. 2, 48-56 (1995) · Zbl 0849.58029
[37] P. Etingof and A. Varchenko, Geometry and classification of solutions of the classical dynamical Yang-Baxter equation, Preprint q-alg/9703040. · Zbl 0915.17018
[38] Evens, S.; Lu, J. -H.: Poisson harmonic forms, the Kostant harmonic forms, and the S1-equivariant cohomology of K T. (1997) · Zbl 0914.22009
[39] Evens, S.; Lu, J. -H.; Weinstein, A.: Transverse measures, the modular class, and a cohomology pairing for Lie algebroids. (1996) · Zbl 0968.58014
[40] Farkas, D. R.; Letzter, G.: Ring theory from symplectic geometry. J. pure appl. Alg. 125, 155-190 (1998) · Zbl 0974.17025
[41] Felder, G.: Conformal field theory and integrable systems associated to elliptic curves. Proc. I.C.M., Zürich, 1994 2, 1247-1255 (1995) · Zbl 0852.17014
[42] Flato, M.; Dito, G.; Sternheimer, D.: Nambu mechanics, n-ary operations and their quantization. Mathematical physics studies 20, 43-66 (1997) · Zbl 1149.70321
[43] Fuchssteiner, B.: The Lie algebra structure of degenerate Hamiltonian and bi-Hamiltonian systems. Progr. theoret. Phys. 68, 1082-1104 (1982) · Zbl 1098.37540
[44] Gallavotti, G.; Pulvirenti, M.: Classical KMS condition and tomita-takesaki theory. Comm. math. Phys. 46, 1-9 (1976) · Zbl 0323.28011
[45] Gel’fand, I. M.; Dikii, L. A.: English translation s.g.gindikin collected papers of izrail M. Gelfand. Collected papers of izrail M. Gelfand 1, 625-646 (1987)
[46] Gerstenhaber, M.: On the cohomology structure of an associative ring. Annals of math. 78, 267-288 (1963) · Zbl 0131.27302
[47] Ginzburg, V. L.: Equivariant Poisson cohomology and a spectral sequence associated with a moment map. (1996)
[48] Ginzburg, V. L.; Lu, J. -H.: Poisson cohomology of Morita-equivalent Poisson manifolds. Duke math. J. 68, A199-A205 (1992) · Zbl 0783.58026
[49] Ginzburg, V. L.; Weinstein, A.: Lie-Poisson structure on some Poisson Lie groups. Journal AMS 5, 445-453 (1992) · Zbl 0766.58018
[50] Gompf, R. E.: A new construction of symplectic manifolds. Ann. of math. 142, 527-595 (1995) · Zbl 0849.53027
[51] Grabowski, J.; Marmo, G.; Perelomov, A. M.: Poisson structures: towards a classification. Modern phys. Lett. A 8, 1719-1733 (1993) · Zbl 1020.37529
[52] Greene, R. E.; Shiohama, K.: Diffeomorphisms and volume-preserving embeddings of noncompact manifolds. Trans. amer. Math. soc. 255, 403-414 (1979) · Zbl 0418.58002
[53] Guillemin, V.; Sternberg, S.: Convexity properties of the moment mapping. Invent. math. 67, 491-513 (1982) · Zbl 0503.58017
[54] Guillemin, V.; Sternberg, S.: Symplectic techniques in physics. (1984) · Zbl 0576.58012
[55] Guruprasad, K.; Huebschmann, J.; Jeffrey, L.; Weinstein, A.: Group systems, groupoids, and moduli spaces of parabolic bundles. Duke math. J. 89, 377-412 (1997) · Zbl 0885.58011
[56] Haraki, A.: Quadratisation de certaines structures de Poisson. J. London math. Soc. 56, 384-394 (1997) · Zbl 0988.37068
[57] Hartshorne, R.: Algebraic geometry. (1977) · Zbl 0367.14001
[58] Hector, G.; Macías, E.; Saralegi, M.: Lemme de Moser feuilleté et classification des variétés de Poisson régulières. Publicacions matemàtiques 33, 423-430 (1989)
[59] Huebschmann, J.: Poisson cohomology and quantization. J. reine angew. Math. 408, 57-113 (1990) · Zbl 0699.53037
[60] Huebschmann, J.: Poisson structures on certain moduli spaces for bundles on a surface. Ann. inst. Fourier (Grenoble) 45, 65-91 (1995) · Zbl 0819.58010
[61] J. Huebschmann, Duality for Lie-Rinehart algebras and the modular class, Preprint dg-ga/9702008; J. Reine Angew. Math., to appear.
[62] J. Huebschmann, Lie-Rinehart algebras, Gerstenhaber algebras and Batalin-Vilkovisky algebras, Preprint dg-ga/9704005; Ann. Inst. Fourier (Grenoble), to appear. · Zbl 0973.17027
[63] Jacobi, C. G. J.: Vorlesungen über dynamik, gehalten an der universität zu königsberg im wintersemester 1842--1843 und nach einem von C.W. Borchardt ausgearbeiteten hefte. Zweite revidirte ausgabe, 1884 (1969)
[64] Karasev, M. V.: Analogues of objects of Lie group theory for nonlinear Poisson brackets. Math. USSR izvestiya 28, 497-527 (1987) · Zbl 0624.58007
[65] Karasev, M. V.; Maslov, V. P.: Nonlinear Poisson brackets: geometry and quantization. Translations of mathematical monographs 119 (1993) · Zbl 0776.58003
[66] Karolinsky, E.: The classification of Poisson homogeneous spaces of compact Poisson Lie groups. Mathematical physics, analysis, and geometry 3, 274-289 (1996)
[67] Kirillov, A. A.: Local Lie algebras. Russian math. Surveys 31, No. 4, 55-75 (1976) · Zbl 0357.58003
[68] F. Kirwan, Moment maps and symplectic reduction (this volume).
[69] M. Kontsevich, Deformation quantization of Poisson manifolds, I, Preprint q-alg/9709040. · Zbl 1058.53065
[70] W.-S. Koon and J.E. Marsden, The Poisson reduction of nonholonomic mechanical systems, Reports on Math Phys., to appear.
[71] Kosmann-Schwarzbach, Y.: Exact gerstenhaber algebras and Lie bialgebroids. Acta appl. Math. 41, 153-165 (1995) · Zbl 0837.17014
[72] Kosmann-Schwarzbach, Y.: Lie bialgebras, Poisson Lie groups, and dressing transformations. Lect. notes. In physics 495 (1997) · Zbl 1078.37517
[73] Kosmann-Schwarzbach, Y.; Magri, F.: Poisson-Nijenhuis structures. Ann. inst. H. Poincaré phys. Théor. 53, 35-81 (1990) · Zbl 0707.58048
[74] Kostant, B.: Lie algebra cohomology and generalized Schubert cells. Ann. of math. 77, No. 1, 72-144 (1963) · Zbl 0134.03503
[75] Kostant, B.: On the solution to a generalized Toda lattice and representation theory. Adv. in math. 34, 195-338 (1979) · Zbl 0433.22008
[76] Koszul, J. L.: Crochet de Schouten-Nijenhuis et cohomologie. Astérisque, hors série, 257-271 (1985)
[77] Lada, T.; Markl, M.: Strongly homotopy Lie algebras. Comm. in alg. 23, 2147-2161 (1995) · Zbl 0999.17019
[78] Landsman, N. P.: Mathematical topics between classical and quantum mechanics. (1997) · Zbl 0923.00008
[79] Libermann, P.; Marle, C. -M.: Symplectic geometry and analytical mechanics. (1987) · Zbl 0643.53002
[80] Lichnerowicz, A.: LES variétés de Poisson et leurs algèbres de Lie associées. J. diff. Geom. 12, 253-300 (1977) · Zbl 0405.53024
[81] Lichnerowicz, A.: LES variétés de Jacobi et leurs algèbres de Lie associées. J. maths. Pures. appl. 57, 453-488 (1978) · Zbl 0407.53025
[82] Lie, S.: Theorie der transformationsgruppen. Zweiter abschnitt, unter mitwirkung von prof. Dr. friedrich Engel (1890) · Zbl 23.0364.01
[83] Liu, Z. -J.; Weinstein, A.; Xu, P.: Manin triples for Lie bialgebroids. J. diff. Geom. 45, 547-574 (1997) · Zbl 0885.58030
[84] Liu, Z. -J.; Weinstein, A.; Xu, P.: Dirac structures and Poisson homogeneous spaces. Comm. math. Phys. 192, 121-144 (1998) · Zbl 0921.58074
[85] Liu, Z. -J.; Xu, P.: On quadratic Poisson structures. Lett. math. Phys. 26, 33-42 (1992) · Zbl 0773.58007
[86] Lu, J. -H.: Momentum mappings and reduction of Poisson actions. MSRI publications 20, 209-226 (1991) · Zbl 0735.58004
[87] Lu, J. -H.: Poisson homogeneous spaces and Lie algebroids associated to Poisson actions. Duke math. J. 86, 261-304 (1997) · Zbl 0889.58036
[88] Lu, J. -H.: Classical dynamical r-matrices and homogeneous Poisson structures on G H and on K T. (1997)
[89] Lu, J. -H.: Coordinates on Schubert cells, Kostant’s harmonic forms, and the Bruhat-Poisson structure on G B. (1997)
[90] Lu, J. -H.; Weinstein, A.: Groupoïdes symplectiques doubles des groupes de Lie-Poisson. CR acad, sci. Paris 309, 951-954 (1989) · Zbl 0701.58025
[91] Lu, J. -H.; Weinstein, A.: Poisson Lie groups, dressing transformations, and the Bruhat decomposition. J. diff. Geom. 31, 501-526 (1990) · Zbl 0673.58018
[92] Mackenzie, K.: Lie groupoids and Lie algebroids in differential geometry. LMS lecture notes series 124 (1987) · Zbl 0683.53029
[93] Mackenzie, K. C. H.; Xu, P.: Lie bialgebroids and Poisson groupoids. Duke math. J. 73, 415-452 (1994) · Zbl 0844.22005
[94] Mackenzie, K. C. H.; Xu, P.: Integration of Lie bialgebroids. (1997) · Zbl 0961.58009
[95] Majid, S.: Matched pairs of Lie groups associated to solutions of the Yang-Baxter equations. Pacific J. Math. 141, 311-332 (1990) · Zbl 0735.17017
[96] Marsden, J.; Weinstein, A.: The Hamiltonian structure of the Maxwell-Vlasov equations. Physica D 4, 394-406 (1982) · Zbl 1194.35463
[97] Mikami, K.; Weinstein, A.: Moments and reduction for symplectic groupoid actions. Publ. RIMS Kyoto univ. 24, 121-140 (1988) · Zbl 0659.58016
[98] K. Mikami and A. Weinstein, in preparation.
[99] Milnor, J.: Morse theory. Annals of mathematics studies 51 (1963) · Zbl 0108.10401
[100] Molinier, J. C.: Linéarisation de structures de Poisson. Thèse de doctorat (1993)
[101] Moore, C. C.; Schochet, C.: Global analysis on foliated spaces. MSRI publications 9 (1988) · Zbl 0648.58034
[102] Moser, J.: On the volume elements on a manifold. Trans. amer. Math. soc. 120, 280-296 (1965) · Zbl 0141.19407
[103] Nambu, Y.: Generalized Hamiltonian dynamics. Phys. rev. D 7, 2405-2412 (1973) · Zbl 1027.70503
[104] Ovsienko, V. Yu.; Khesin, B. A.: Symplectic leaves of the Gelfand-dikii brackets and homotopy classes of nonflattening curves. Funct. anal. Appl. 24, 33-40 (1990) · Zbl 0723.58021
[105] Poisson, S. -D.: Sur la variation des constantes arbitraires dans LES questions de mécanique. J. ecole polytechnique 8, No. 15, 266-344 (1809)
[106] Polishchuk, A.: Algebraic geometry of Poisson brackets. J. math. Sci. (New York) 84, 1413-1444 (1997) · Zbl 0995.37057
[107] Pradines, J.: Troisième théorème de Lie sur LES groupoïdes différentiables. CR acad. Sc. Paris 267, 21-23 (1968) · Zbl 0172.03502
[108] Roytenberg, D.; Weinstein, A.: Courant algebroids and strongly homotopy Lie algebras. (1998) · Zbl 0946.17006
[109] Saint-Germain, M.: Algèbres de Poisson et structures transverses. Thèse de doctorat (1997)
[110] S.D. Salamon, Review of ”SW \Rightarrow Gr: from the Seiberg-Witten equations to pseudo-holomorphic curves,” by C.H. Taubes, Math. Reviews, review no. 97a:57033.
[111] Semenov-Tian-Shansky, M. A.: What is a classical r-matrix?. Funct. anal. Appl. 17, No. 4, 259-272 (1983) · Zbl 0535.58031
[112] Semenov-Tian-Shansky, M. A.: Dressing transformations and Poisson group actions. Publ. R.I.M.S. 21, 1237-1260 (1985) · Zbl 0673.58019
[113] Sheu, A. J. -L.: Quantization of the Poisson $SU(2)$ and its Poisson homogeneous space--the 2-sphere. Comm. math. Phys. 135, 217-232 (1991) · Zbl 0719.58042
[114] Shlyakhtenko, D.: Von Neumann algebras and Poisson manifolds, survey article for math 277. (Spring 1997)
[115] Sjamaar, R.; Lerman, E.: Stratified symplectic spaces and reduction. Ann. of math. 134, 375-422 (1991) · Zbl 0759.58019
[116] Souriau, J. M.: Structure des systèmes dynamiques. (1970) · Zbl 0186.58001
[117] Taubes, C. H.: SW $\Rightarrow $Gr: from the Seiberg-Witten equations to pseudo-holomorphic curves. J. amer. Math. soc. 9, 845-918 (1996) · Zbl 0867.53025
[118] Terng, C. L.: Convexity theorem for isoparametric submanifolds. Invent. math. 85, 487-492 (1986) · Zbl 0615.53048
[119] Vaintrob, A.: Lie algebroids and homological vector fields. Russ. math. Surv. 52, 428-429 (1997) · Zbl 0955.58017
[120] Vaisman, I.: Lectures on the geometry of Poisson manifolds. (1994) · Zbl 0810.53019
[121] Vaisman, I.: A lecture on Poisson-Nijenhuis structures. Progr. math. 145, 169-185 (1997) · Zbl 0868.58039
[122] Varchenko, A. N.; Givental’, A. B.: The period mapping and the intersection form. Funct. anal. Appl. 16, 83-93 (1982) · Zbl 0513.32018
[123] Vorob’ev, Yu.M.; Karasev, M. V.: Poisson manifolds and the Schouten bracket. Funct. anal. Appl. 22, 1-9 (1988) · Zbl 0667.58018
[124] Voronov, F. F.: On the Poisson envelope of a Lie algebra. ”Noncommutative” moment space. Funct. anal. Appl. 29, 196-199 (1995) · Zbl 0860.17036
[125] Wade, A.: Normalisation de structures de Poisson. Thèse de doctorat (1996)
[126] Weinstein, A.: Lectures on symplectic manifolds. Regional conference series in mathematics 29 (1977) · Zbl 0406.53031
[127] Weinstein, A.: The local structure of Poisson manifolds. J. diff. Geom. 18, 523-557 (1983) · Zbl 0524.58011
[128] Weinstein, A.: Poisson structures and Lie algebras. Astérisque, hors série, 421-434 (1985)
[129] Weinstein, A.: Symplectic groupoids and Poisson manifolds. Bull. amer. Math. soc. 16, 101-104 (1987) · Zbl 0618.58020
[130] Weinstein, A.: Poisson geometry of the principal series and nonlinearizable structures. J. diff. Geom. 25, 55-73 (1987) · Zbl 0592.58024
[131] Weinstein, A.: Coisotropic calculus and Poisson groupoids. J. math. Soc. Japan 40, 705-727 (1988) · Zbl 0642.58025
[132] Weinstein, A.: Groupoids: unifying internal and external symmetry. Notices AMS 43, 744-752 (1996) · Zbl 1044.20507
[133] Weinstein, A.: The modular automorphism group of a Poisson manifold. J. geom. Phys. 23, 379-394 (1997) · Zbl 0902.58013
[134] Weinstein, A.; Xu, P.: Extensions of symplectic groupoids and quantization. J. reine angew. Math. 417, 159-189 (1991) · Zbl 0722.58021
[135] Weinstein, A.; Xu, P.: Classical solutions of the quantum Yang-Baxter equation. Comm. math. Phys. 148, 309-343 (1992) · Zbl 0849.17015
[136] A. Weinstein and P. Xu, Hochschild cohomology and characteristic classes for star-products, Festschrift for V.I. Arnol’d’s 60th birthday, Vol. 2 (Amer. Math. Soc., Providence, to appear); Preprint q-alg/9709043.
[137] Xu, P.: Morita equivalence of Poisson manifolds. Comm. math. Phys. 142, 493-509 (1991) · Zbl 0746.58034
[138] Xu, P.: Poisson cohomology of regular Poisson manifolds. Ann. inst. Fourier Grenoble 42, 967-988 (1992) · Zbl 0759.58020
[139] Xu, P.: Noncommutative Poisson algebras. Amer. J. Math. 116, 101-125 (1994) · Zbl 0797.58012
[140] Xu, P.: Flux homomorphism on symplectic groupoids. Math. Z. 226, 575-597 (1997) · Zbl 0891.58013
[141] P. Xu, Gerstenhaber algebras and BV-algebras in Poisson geometry, Preprint dg-ga/9703001. · Zbl 0941.17016
[142] Zakrzewski, S.: Quantum and classical pseudogroups, I and II. Comm. math. Phys. 134, 371-395 (1990) · Zbl 0708.58031
[143] Zakrzewski, S.: Phase spaces related to standard classical r-matrices. J. phys. A: math. Gen. 29, 1841-1857 (1996) · Zbl 0924.58023
[144] Zakrzewski, S.: Poisson structures on r2n having only two symplectic leaves: the origin and the rest. (1998)