×

zbMATH — the first resource for mathematics

On different geometric formulations of Lagrangian formalism. (English) Zbl 0930.58001
We consider two geometric formulations of Lagrangian formalism on fibred manifolds: Krupka’s theory of finite order variational sequences, and Vinogradov’s infinite order variational sequence associated with the \(C\)-spectral sequence. On the one hand, we show that the direct limit of Krupka’s variational bicomplex is a new infinite order variational bicomplex which yields a new infinite order variational sequence. On the other hand, by means of Vinogradov’s \(C\)-spectral sequence, we provide a new finite order variational sequence whose direct limit turns out to be Vinogradov’s infinite order variational sequence. Finally, we provide an equivalence of the two finite order and infinite order variational sequences up to the space of Euler-Lagrange morphisms.
Reviewer: R.Vitolo (Lecce)

MSC:
58A12 de Rham theory in global analysis
58A20 Jets in global analysis
58E30 Variational principles in infinite-dimensional spaces
58J10 Differential complexes
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Anderson, I.M.; Duchamp, T., On the existence of global variational principles, Amer. math. J., 102, 781-868, (1980) · Zbl 0454.58021
[2] Bauderon, M., Le problème inverse du calcul des variations, Ann. de l’I.H.P., 36, 2, 159-179, (1982) · Zbl 0519.58027
[3] Bott, R.; Tu, L.W., Differential forms in algebraic topology, () · Zbl 0496.55001
[4] Dedecker, P.; Tulczyjew, W.M., Spectral sequences and the inverse problem of the calculus of variations, (), 498-503 · Zbl 0482.49027
[5] Duzhin, S.V., \(C\)-spectral sequence on the manifold J1M, Uspekhi math. nauk, 38, 165-166, (1983) · Zbl 0521.58003
[6] Ferraris, M.; Francaviglia, M., Global formalism in higher order calculus of variations, (), 93-117 · Zbl 0564.49028
[7] Greub, W., Multilinear algebra, (1978), Springer · Zbl 0387.15001
[8] Krasil’shchik, I.S.; Lychagin, V.V.; Vinogradov, A.M., Geometry of jet spaces and non-linear partial differential equations, (1986), Gordon and Breach New York · Zbl 0722.35001
[9] Kolář, I., A geometrical version of the higher order Hamilton formalism in fibred manifolds, Jour. geom. phys., 1, 2, 127-137, (1984) · Zbl 0595.58016
[10] Krupka, D., Variational sequences on finite order jet spaces, (), 236-254 · Zbl 0813.58014
[11] Kuperschmidt, B.A., Geometry of jet bundles and the structure of Lagrangian and Hamiltonian formalism, (), 162-218 · Zbl 0439.58016
[12] Lane, S.Mac, Homology, (1963), Springer New York · Zbl 0818.18001
[13] Mangiarotti, L.; Modugno, M., Fibered spaces, jet spaces and connections for field theories, (), 135-165 · Zbl 0539.53026
[14] Massey, W.S., Algebraic topology: an introduction, (1977), Springer New York · Zbl 0361.55002
[15] Olver, P.J.; Shakiban, C., A resolution of the Euler operator, (), 223-229 · Zbl 0395.49002
[16] Pommaret, J.F., Systems of partial differential equations and Lie pseudogroups, (1978), Gordon and Breach New York · Zbl 0418.35028
[17] Saunders, D.J., The geometry of jet bundles, (1989), Cambridge Univ. Press · Zbl 0665.58002
[18] Spanier, E.H., Algebraic topology, (1966), McGraw-Hill New York · Zbl 0145.43303
[19] Takens, F., Symmetries, () · Zbl 0417.70007
[20] Takens, F., A global version of the inverse problem of the calculus of variations, J. diff. geom., 14, 543-562, (1979) · Zbl 0463.58015
[21] Tulczyjew, W.M., The Lagrange complex, Bull. soc. math. France, 105, 419-431, (1977) · Zbl 0408.58020
[22] Tulczyjew, W.M., The Euler-Lagrange resolution, (), 22-48 · Zbl 0456.58012
[23] Vinogradov, A.M., On the algebro-geometric foundations of Lagrangian field theory, Soviet math. dokl., 18, 1200-1204, (1977) · Zbl 0403.58005
[24] Vinogradov, A.M., A spectral sequence associated with a non-linear differential equation, and algebrogeometric foundations of Lagrangian field theory with constraints, Soviet math. dokl., 19, 144-148, (1978) · Zbl 0406.58015
[25] Vinogradov, A.M., The \(C\)-spectral sequence, Lagrangian formalism and conservation laws I-II, Journal of mathematical analysis and applications, 100, 1, (1984) · Zbl 0548.58015
[26] Vitolo, R., Some aspects of variational sequences in mechanics, (), 487-494 · Zbl 0863.58001
[27] Vitolo, R., Bicomplessi lagrangiani ed applicazioni alla meccanica relativistica classica e quantistica, ()
[28] Vitolo, R., Finite order variational bicomplexes, (), 321-333, (2) · Zbl 0927.58008
[29] Wells, R.O., Differential analysis on complex manifolds, () · Zbl 0262.32005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.