Marciniak, Ewa; Wesolowski, Jacek Asymptotic Eulerian expansions for binomial and negative binomial reciprocals. (English) Zbl 0930.60004 Proc. Am. Math. Soc. 127, No. 11, 3329-3338 (1999). Summary: Asymptotic expansions of any order for expectations of inverses of random variables with positive binomial and negative binomial distributions are obtained in terms of the Eulerian polynomials. The paper extends and improves upon an expansion due to F. N. David and N. L. Johnson [Metron 18, No. 1/2, 77-81 (1956; Zbl 0074.35601)]. Cited in 1 ReviewCited in 13 Documents MSC: 60E05 Probability distributions: general theory 11B68 Bernoulli and Euler numbers and polynomials 05A16 Asymptotic enumeration 62E20 Asymptotic distribution theory in statistics Keywords:Eulerian numbers; Eulerian polynomials; asymptotic series expansions; inverse moments; positive binomial distribution; negative binomial distribution Citations:Zbl 0074.35601 PDF BibTeX XML Cite \textit{E. Marciniak} and \textit{J. Wesolowski}, Proc. Am. Math. Soc. 127, No. 11, 3329--3338 (1999; Zbl 0930.60004) Full Text: DOI OpenURL