×

New goodness-of-fit tests and their application to nonparametric confidence sets. (English) Zbl 0930.62034

Summary: Suppose one observes a process \(V\) on the unit interval, where \(dV=f_0 +dW\) with an unknown parameter \(f_0\in L_1 [0,1]\) and standard Brownian motion \(W\). We propose a particular test of one-point hypotheses about \(f_0\) which is based on suitably standardized increments of \(V\). This test is shown to have desirable consistency properties if, for instance, \(f_0\) is restricted to various Hölder classes of functions. The test is mimicked in the context of nonparametric density estimation, nonparametric regression and interval-censored data. Under shape restrictions on the parameter, such as monotonicity or convexity, we obtain confidence sets for \(f_0\) adapting to its unknown smoothness.

MSC:

62G07 Density estimation
62M02 Markov processes: hypothesis testing
62G10 Nonparametric hypothesis testing
62G08 Nonparametric regression and quantile regression
62G15 Nonparametric tolerance and confidence regions
Full Text: DOI

References:

[1] Anderson, T. W. (1955). The integral of a sy mmetric unimodal function over a sy mmetric convex set and some probability inequalities. Proc. Amer. Math. Soc. 6 170-176. JSTOR: · Zbl 0066.37402 · doi:10.2307/2032333
[2] Billingsley, P. (1968). Convergence of Probability Measures. Wiley, New York. · Zbl 0172.21201
[3] Brown, L. D. and Low, M. (1996). Asy mptotic equivalence of nonparametric regression and white noise. Ann. Statist. 24 2384-2398. · Zbl 0867.62022 · doi:10.1214/aos/1032181159
[4] Davies, P. L. (1995). Data features. Statist. Neerlandica 49 185-245. · Zbl 0831.62001 · doi:10.1111/j.1467-9574.1995.tb01464.x
[5] Donoho, D. L. (1988). One-sided inference about functionals of a density. Ann. Statist. 16 1390- 1420. · Zbl 0665.62040 · doi:10.1214/aos/1176351045
[6] Dudley, R. M. (1978). Central limit theorems for empirical measures. Ann. Probab. 6 899-929. · Zbl 0404.60016 · doi:10.1214/aop/1176995384
[7] Groeneboom, P. and Wellner, J. A. (1992). Information Bounds and Nonparametric Maximum Likelihood Estimators. Birkhäuser, Basel. · Zbl 0757.62017
[8] Hengartner, N. W. and Stark, P. B. (1995). Finite-sample confidence envelopes for shaperestricted densities. Ann. Statist. 23 525-550. · Zbl 0828.62043 · doi:10.1214/aos/1176324534
[9] Hoeffding, W. (1963). Probability inequalities for sums of bounded random variables. J. Amer. Statist. Assoc. 58 13-30. JSTOR: · Zbl 0127.10602 · doi:10.2307/2282952
[10] Ingster, Y. I. (1993). Asy mptotically minimax hy pothesis testing for nonparametric alternatives I-III. Math. Methods Statist. 2 85-114, 171-189, 249-268. · Zbl 0798.62057
[11] Khas’minskii, R. Z. (1978). A lower bound on the risks of nonparametric estimates of densities in the uniform metric. Theory Probab. Appl. 23 794-798. · Zbl 0449.62032 · doi:10.1137/1123095
[12] Khas’minskii, R. Z. (1979). Lower bounds for the risk of nonparametric estimates of the mode. In Contributions to Statistics, Jaroslav Hájek Memorial Volume (J. Jureckova, ed.) 91-97. Academia, Prague.
[13] Low, M. G. (1997). Personal communication.
[14] Mammen, E. (1991). Nonparametric regression under qualitative smoothness assumptions. Ann. Statist. 19 741-759. · Zbl 0737.62039 · doi:10.1214/aos/1176348118
[15] Marron, J. S. and Tsy bakov, A. B. (1995). Visual error criteria for qualitative smoothing. J. Amer. Statist. Assoc. 90 499-507. JSTOR: · Zbl 0826.62026 · doi:10.2307/2291060
[16] M üller, D. W. (1991). Quantile regression. Preprint 624, Univ. Heidelberg, Sonderforschungsbereich 123.
[17] Nussbaum, M. (1996). Asy mptotic equivalence of density estimation and Gaussian white noise. Ann. Statist. 24 2399-2430. · Zbl 0867.62035 · doi:10.1214/aos/1032181160
[18] Pollard, D. (1984). Convergence of Stochastic Processes. Springer, New York. · Zbl 0544.60045
[19] Romano, J. P. (1988). On weak convergence and optimality of kernel density estimates of the mode. Ann. Statist. 16 629-647. · Zbl 0658.62053 · doi:10.1214/aos/1176350824
[20] Sawitzki, G. (1996). Extensible statistical software: on a voy age to Oberon. J. Comput. Graph. Statist. 5 263-283.
[21] Shorack, G. R. and Wellner, J. A. (1982). Limit theorems and inequalities for the uniform empirical process indexed by intervals. Ann. Probab. 10 639-652. · Zbl 0497.60026 · doi:10.1214/aop/1176993773
[22] Shorack, G. R. and Wellner, J. A. (1986). Empirical Processes with Applications to Statistics. Wiley, New York. · Zbl 1170.62365
[23] Spokoiny, V. G. (1996). Adaptive hy pothesis testing using wavelets. Ann. Statist. 24 2477-2498. · Zbl 0898.62056 · doi:10.1214/aos/1032181163
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.