×

Strong approximation of density estimators from weakly dependent observations by density estimators from independent observations. (English) Zbl 0930.62038

Summary: We derive an approximation of a density estimator based on weakly dependent random vectors by a density estimator built from independent random vectors. We construct, on a sufficiently rich probability space, such a pairing of the random variables of both experiments that the set of observations \(\{X_1, \dots, X_n\}\) from the time series model is nearly the same as the set of observations \(\{Y_1, \dots, Y_n\}\) from the i.i.d. model. With a high probability all sets of the form \[ \bigl(\{X_1, \dots, X_n\}\Delta \{Y_1, \dots, Y_n\} \bigr)\cap \bigl( [a_1,b_1] \times \cdots \times [a_d,b_d]\bigr) \] contain no more than \(O(\{[n^{1/2}\prod (b_i-a_i)]+1\}\log(n))\) elements, respectively. Although this does not imply very much for parametric problems, it has important implications in nonparametric statistics.
It yields a strong approximation of a kernel estimator of the stationary density by a kernel density estimator in the i.i.d. model. Moreover, it is shown that such a strong approximation is also valid for the standard bootstrap and the smoothed bootstrap. Using these results we derive simultaneous confidence bands as well as supremum-type nonparametric tests based on reasoning for the i.i.d. model.

MSC:

62G07 Density estimation
62G20 Asymptotic properties of nonparametric inference
62G10 Nonparametric hypothesis testing
62G09 Nonparametric statistical resampling methods
60F15 Strong limit theorems
Full Text: DOI

References:

[1] Amosova, N. N. (1972). On limit theorems for probabilities of moderate deviations. Vestnik Leningrad. Univ. 13 5-14 (in Russian).
[2] Ango Nze, P. (1992). Crit eres d’ergodicité de quelques mod eles a représentation markovienne. C. R. Acad. Sci. Paris S er. I Math. 315 1301-1304. · Zbl 0761.60062
[3] Ango Nze, P. and Doukhan, P. (1993). Estimation fonctionnelle de séries temporelles mélangeantes. C. R. Acad. Sci. Paris S er. I Math. 317 405-408. · Zbl 0779.62072
[4] Ango Nze, P. and Rios, R. (1995). Estimation L de la fonction de densité d‘un processus faiblement dépendant: les cas absolument régulier et fortement mélangeant. C. R. Acad. Sci. Paris S er. I Math. 320 1259-1262. · Zbl 0829.62081
[5] Bickel, P. and Rosenblatt, M. (1973). On some global measures of the deviations of density function estimates. Ann. Statist. 1 1071-1095. · Zbl 0275.62033 · doi:10.1214/aos/1176342558
[6] Brémaud, P. and Massoulié, L. (1996). Stability of nonlinear Hawkes processes. Ann. Probab. 24 1563-1588. · Zbl 0870.60043 · doi:10.1214/aop/1065725193
[7] B ühlmann, P. (1994). Blockwise bootstrapped empirical process for stationary sequences. Ann. Statist. 22 995-1012. · Zbl 0806.62032 · doi:10.1214/aos/1176325508
[8] Dhompongsa, S. (1984). A note on the almost sure approximation of the empirical process of weakly dependent random vectors. Yokohama Math. J. 32 113-121. · Zbl 0556.60015
[9] Doukhan, P. (1994). Mixing: Properties and Examples. Lecture Notes in Statist. 85. Springer, New York. · Zbl 0801.60027
[10] Doukhan, P., Massart, P. and Rio, E. (1995). Invariance principles for absolutely regular empirical processes. Ann. Inst. H. Poincaré Probab. Statist. 31 393-427. · Zbl 0817.60028
[11] Doukhan, P. and Portal, F. (1987). Principe d’invariance faible pour la fonction de répartition empirique dans un cadre multidimensionnel et mélangeant. Probab. Math. Statist. 8 117-132. · Zbl 0651.60042
[12] Efron, B. (1979). Bootstrap methods: another look at the jackknife. Ann. Statist. 7 1-26. · Zbl 0406.62024 · doi:10.1214/aos/1176344552
[13] Efron, B. (1982). The Jackknife, the Bootstrap and Other Resampling Plans. SIAM, Philadelphia. · Zbl 0496.62036
[14] Falk, M. and Reiss, R.-D. (1989a). Weak convergence of smoothed and nonsmoothed bootstrap quantile estimates. Ann. Probab. 17 362-371. JSTOR: · Zbl 0993.65125 · doi:10.1090/S0025-5718-02-01439-4
[15] Falk, M. and Reiss, R.-D. (1989b). Bootstrapping the distance between smooth bootstrap and sample quantile distribution. Probab. Theory Related Fields 82 177-186. JSTOR: · Zbl 0993.65125 · doi:10.1090/S0025-5718-02-01439-4
[16] Faraway, J. J. and Jhun, M. (1990). Bootstrap choice of bandwidth for density estimation. J. Amer. Statist. Assoc. 85 1119-1122. JSTOR: · doi:10.2307/2289609
[17] Franke, J., Kreiss, J.-P., Mammen, E. and Neumann, M. H. (1998). Properties of the nonparametric autoregressive bootstrap. Discussion Paper 54/98, SFB 373, Humboldt Univ., Berlin. · Zbl 1062.62173
[18] Friedman, J., Stuetzle, W. and Schroeder, A. (1984). Projection pursuit density estimation. J. Amer. Statist. Assoc. 79 599-608. JSTOR: · doi:10.2307/2288406
[19] Gy örfi, L., Härdle, W., Sarda, P. and Vieu, P. (1989). Nonparametric Curve Estimation from Time Series. Springer, Berlin. · Zbl 0697.62038
[20] Hall, P. (1991). On convergence rates of suprema. Probab. Theory Related Fields 89 447- 455. · Zbl 0725.60024 · doi:10.1007/BF01199788
[21] Hall, P. (1992). The Bootstrap and Edgeworth Expansion. Springer, New York. · Zbl 0744.62026
[22] Hall, P. (1993). On Edgeworth expansion and bootstrap confidence bands in nonparametric curve estimation. J. R. Statist. Soc. Ser. B 55 291-304. · Zbl 0780.62040
[23] Hall, P., DiCiccio, T. J. and Romano, J. P. (1989). On smoothing and the bootstrap. Ann. Statist. 17 692-704. · Zbl 0672.62051 · doi:10.1214/aos/1176347135
[24] Hall, P. and Hart, J. D. (1990). Convergence rates in density estimation for data from infinite-order moving average processes. Probab. Theory Related Fields 87 253-274. · Zbl 0695.60043 · doi:10.1007/BF01198432
[25] Härdle, W. and Mammen, E. (1993). Comparing nonparametric versus parametric regression fits. Ann. Statist. 21 1926-1947. · Zbl 0795.62036 · doi:10.1214/aos/1176349403
[26] Hart, J. D. (1996). Some automated methods of smoothing time-dependent data. J. Nonparametr. Statist. 6 115-142. · Zbl 0878.62031 · doi:10.1080/10485259608832667
[27] Koml ós, J., Major, P. and Tusnády, G. (1975). An approximation of partial sums of independent rv’s and the sample distribution function. Z. Wahrsch. Verw. Gebiete 32 111-131. · Zbl 0308.60029 · doi:10.1007/BF00533093
[28] Konakov, V., Läuter, H. and Liero, H. (1995). Nonparametric versus parametric goodness of fit. Statistics. · Zbl 0952.62045
[29] K ünsch, H. R. (1989). The jackknife and the bootstrap for general stationary observations. Ann. Statist. 17 1217-1241. · Zbl 0684.62035 · doi:10.1214/aos/1176347265
[30] Masry, E. (1994). Probability density estimation from dependent observations using wavelet orthonormal bases. Statist. Probab. Lett. 21 181-194. · Zbl 0814.62021 · doi:10.1016/0167-7152(94)90114-7
[31] Mokkadem, A. (1988). Mixing properties of ARMA processes. Stochastic Process. Appl. 29 309-315. · Zbl 0647.60042 · doi:10.1016/0304-4149(88)90045-2
[32] Mokkadem, A. (1990). Propriétés de mélange des processus autorégessifs poly nomiaux. Ann. Inst. H. Poincaré Probab. Statist. 26 219-260. · Zbl 0706.60040
[33] Neumann, M. H. (1995). Automatic bandwidth choice and confidence intervals in nonparametric regression. Ann. Statist. 23 1937-1959. · Zbl 0856.62042 · doi:10.1214/aos/1034713641
[34] Neumann, M. H. and Kreiss, J.-P. (1998). Regression-ty pe inference in nonparametric autoregression. Ann. Statist. 26 1570-1613. · Zbl 0935.62049 · doi:10.1214/aos/1024691254
[35] Neumann, M. H. and Paparoditis, E. (1998). A nonparametric test for the stationary density. Discussion Paper 58/98, SFB 373, Humboldt Univ., Berlin.
[36] Pham, T. D. (1986). The mixing property of bilinear and generalised random coefficient autoregressive models. Stochastic Process. Appl. 23 291-300. · Zbl 0614.60062 · doi:10.1016/0304-4149(86)90042-6
[37] Pham, T. D. and Tran, L. T. (1985). Some mixing properties of time series models. Stochastic Process. Appl. 19 297-303. · Zbl 0564.62068 · doi:10.1016/0304-4149(85)90031-6
[38] Reiss, R.-D. (1993). A Course on Point Processes. Springer, New York. · Zbl 0771.60037
[39] Robinson, P. M. (1983). Nonparametric estimators for time series. J. Time Ser. Anal. 4 185-207. · Zbl 0544.62082 · doi:10.1111/j.1467-9892.1983.tb00368.x
[40] Shorack, G. R. and Wellner, J. A. (1986). Empirical Processes with Applications to Statistics. Wiley, New York. · Zbl 1170.62365
[41] Silverman, B. W. and Young, G. A. (1987). The bootstrap: to smooth or not to smooth? Biometrika 74 469-479. JSTOR: · Zbl 0654.62034 · doi:10.1093/biomet/74.3.469
[42] Spokoiny, V. G. (1996). Adaptive and spatially adaptive testing of a nonparametric hy pothesis. Math. Methods Statist.
[43] Takahata, H. and Yoshihara, K. (1987). Central limit theorems for integrated square error of nonparametric density estimators based on absolutely regular random sequences. Yokohama Math. J. 35 95-111. · Zbl 0636.62030
[44] Tran, L. T. (1990). Density estimation for time series by histograms. J. Statist. Plann. Inference 40 61-79. · Zbl 0815.62023 · doi:10.1016/0378-3758(94)90142-2
[45] Yu, B. (1993). Density estimation in the L norm for dependent data with applications to the Gibbs sampler. Ann. Statist. 21 711-735. · Zbl 0792.62035 · doi:10.1214/aos/1176349146
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.