Huang, Jianhua Z. Projection estimation in multiple regression with application to functional ANOVA models. (English) Zbl 0930.62042 Ann. Stat. 26, No. 1, 242-272 (1998). Summary: A general theory on rates of convergence of the least-squares projection estimate in multiple regression is developed. The theory is applied to the functional ANOVA model where the multivariate regression function is modeled as a specified sum of a constant term, main effects (functions of one variable) and selected interaction terms (functions of two or more variables). The least-squares projection is onto an approximating space constructed from arbitrary linear spaces of functions and their tensor products respecting the assumed ANOVA structure of the regression function. The linear spaces that serve as building blocks can be any of the ones commonly used in practice: polynomials, trigonometric polynomials, splines, wavelets and finite elements.The rate of convergence result that is obtained reinforces the intuition that low-order ANOVA modeling can achieve dimension reduction and thus overcome the curse of dimensionality. Moreover, the components of the projection estimates in an appropriately defined ANOVA decomposition provide consistent estimates of the corresponding components of the regression function. When the regression function does not satisfy the assumed ANOVA form, the projection estimate converges to its best approximation of that form. Cited in 1 ReviewCited in 66 Documents MSC: 62G08 Nonparametric regression and quantile regression 62G20 Asymptotic properties of nonparametric inference 62J10 Analysis of variance and covariance (ANOVA) Keywords:finite elements; interaction; polynomials; splines; tensor product; trigonometric polynomials; wavelets; rates of convergence; ANOVA; least-squares; curse of dimensionality × Cite Format Result Cite Review PDF Full Text: DOI References: [1] BREIMAN, L. 1993. Fitting additive models to data. Comput. Statist. Data. Anal. 15 13 46. Z. · Zbl 0937.62613 · doi:10.1016/0167-9473(93)90217-H [2] CHEN, Z. 1991. Interaction spline models and their convergence rates. Ann. Statist. 19 1855 1868. Z. · Zbl 0738.62065 · doi:10.1214/aos/1176348374 [3] CHUI, C. K. 1988. Multivariate Splines. SIAM, Philadelphia. Z. · Zbl 0687.41018 [4] DAUBECHIES, I. 1994. Two recent results on wavelets: wavelets bases for the interval, and biorthogonal wavelets diagonalizing the derivative operator. Recent Advance in Wavelet Analy sis 237 258. Z. · Zbl 0829.42021 [5] DE BOOR, C. 1976. A bound on the L -norm of L -approximation by splines in terms of a global 2 mesh ratio. Math. Comp. 30 765 771. Z. JSTOR: · Zbl 0345.65004 · doi:10.2307/2005397 [6] DE BOOR, C. 1978. A Practical Guide to Splines. Springer, New York. Z. · Zbl 0406.41003 [7] DEVORE, R. A. and LORENTZ, G. G. 1993. Constructive Approximation. Springer-Verlag, Berlin. Z. · Zbl 0797.41016 [8] DEVORE, R. A. and POPOV, V. 1988. Interpolation of Besov spaces. Trans. Amer. Math. Soc. 305 397 414. Z. JSTOR: · Zbl 0646.46030 · doi:10.2307/2001060 [9] DONOHO, D. L. and JOHNSTONE, I. M. 1992. Minimax estimation via wavelet shrinkage. Technical Report 402, Dept. Statistics, Stanford Univ. Z. · Zbl 0935.62041 [10] DONOHO, D. L., JOHNSTONE, I. M., KERKy ACHARIAN, G. and PICARD, D. 1995. Wavelet shrinkage: Z. asy mptopia? with discussion. J. Roy. Statist. Soc. Ser. B 57 301 369. Z. Z. JSTOR: [11] FRIEDMAN, J. H. 1991. Multivariate adaptive regression splines with discussion. Ann. Statist. 19 1 141. Z. · Zbl 0765.62064 · doi:10.1214/aos/1176347963 [12] FRIEDMAN, J. H. and SILVERMAN, B. W. 1989. Flexible parsimonious smoothing and additive Z. modeling with discussion. Technometrics 31 3 39. Z. JSTOR: · Zbl 0672.65119 · doi:10.2307/1270359 [13] HANSEN, M. 1994. Extended linear models, multivariate splines, and ANOVA. Ph.D. dissertation, Univ. California, Berkeley. Z. [14] HASTIE, T. J. and TIBSHIRANI, R. J. 1990. Generalized Additive Models. Chapman and Hall, London. Z. · Zbl 0747.62061 [15] HOEFFDING, W. 1963. Probability inequalities for sums of bounded random variables. J. Amer. Statist. Assoc. 58 13 30. Z. JSTOR: · Zbl 0127.10602 · doi:10.2307/2282952 [16] HUANG, J. Z. 1996. Functional ANOVA models for generalized regression. Technical Report 458, Dept. Statistics, Univ. California, Berkeley. Z. [17] HUANG, J. Z. and STONE, C. J. 1997. The L rate of convergence for event history regression 2 with time-dependent covariates. Scand. J. Statist. To appear. Z. · Zbl 0927.62087 · doi:10.1111/1467-9469.00124 [18] HUANG, J. Z., STONE, C. J. and TRUONG, Y. K. 1997. Functional ANOVA models for proportional hazards regression. Unpublished manuscript. Z. · Zbl 1105.62378 [19] KOOPERBERG, C., BOSE, S. and STONE, C. J. 1997. Poly chotomous regression. J. Amer. Statist. Assoc. 92 117 127. · Zbl 0890.62034 [20] KOOPERBERG, C., STONE, C. J. and TRUONG, Y. K. 1995. Hazard regression. J. Amer. Statist. Assoc. 90 78 94. Z. · Zbl 0839.62050 [21] MEy ER, Y. 1992. Wavelets and Operators. Cambridge University Press. Z. [22] ODEN, J. T. and CAREY, G. F. 1983. Finite Elements: Mathematical Aspects. Prentice-Hall, Englewood Cliffs, NJ. Z. · Zbl 0496.65055 [23] OSWALD, P. 1994. Multilevel Finite Element Approximation: Theory and Application. Teubner, Stuttgart. Z. · Zbl 0830.65107 [24] POLLARD, D. 1990. Empirical Processes: Theory and Application. IMS, Hay ward, CA. Z. · Zbl 0741.60001 [25] SCHUMAKER, L. L. 1981. Spline Functions: Basic Theory. Wiley, New York. Z. · Zbl 0449.41004 [26] SCHUMAKER, L. L. 1991. Recent progress on multivariate splines. In Mathematics of Finite Z. Elements and Application VII J. Whiteman, ed. 535 562. Academic Press, London. Z. [27] STONE, C. J. 1982. Optimal global rates of convergence for nonparametric regression. Ann. Statist. 10 1348 1360. Z. · Zbl 0511.62048 · doi:10.1214/aos/1176345969 [28] STONE, C. J. 1985. Additive regression and other nonparametric models. Ann. Statist. 13 689 705. Z. · Zbl 0605.62065 · doi:10.1214/aos/1176349548 [29] STONE, C. J. 1994. The use of poly nomial splines and their tensor products in multivariate Z. function estimation with discussion. Ann. Statist. 22 118 171. Z. · Zbl 0827.62038 · doi:10.1214/aos/1176325361 [30] STONE, C. J., HANSEN, M., KOOPERBERG, C. and TRUONG, Y. 1997. Poly nomial splines and their Z. tensor products in extended linear modeling with discussion. Ann. Statist. 25 1371 1470. Z. · Zbl 0924.62036 · doi:10.1214/aos/1031594728 [31] STONE, C. J. and KOO, C. Y. 1986. Additive splines in statistics. In Proceedings of the Statistical Computing Section 45 48. Amer. Statist. Assoc., Washington, D.C. Z. [32] TAKEMURA, A. 1983. Tensor analysis of ANOVA decomposition. J. Amer. Statist. Assoc. 78 894 900. Z. JSTOR: · Zbl 0535.62061 · doi:10.2307/2288201 [33] TIMAN, A. F. 1963. Theory of Approximation of Functions of a Real Variable. MacMillan, New York. Z. · Zbl 0117.29001 [34] WAHBA, G., WANG, Y., GU, C., KLEIN R. and KLEIN, B. 1995. Smoothing spline ANOVA for exponential families, with application to the Wisconsin epidemiological study of diabetic retinopathy. Ann. Statist. 23 1865 1895. · Zbl 0854.62042 · doi:10.1214/aos/1034713638 [35] PHILADELPHIA, PENNSy LVANIA 19104-6302 E-MAIL: jianhua@compstat.wharton.upenn.edu This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.