zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On the order of starlikeness of the class UST. (English) Zbl 0931.30005
Let $A$ denote the class of functions $f(z)= z+ \sum_{k=2}^\infty a_k(f)z^k$, regular and normalized in the unit disk $D$. The author studies the relation between two subclasses of $A$, the class of starlike functions of order $\alpha$, $\alpha<1$, $$\text{ST}(\alpha)= \{f\in A: \text{Re} [zf'(z)/ (f(z)]\geq \alpha,\ z\in D\}$$ and the class of uniformly starlike functions $$\text{UST}= \{f\in A: \text{Re} [(z-\zeta) f'(z)/ (f(z)- f(\zeta))]\geq 0,\ (z,\zeta)\in D\times D\}.$$ {\it F. Rønnig} [J. Math. Anal. Appl. 194, No. 1, 319-327 (1995; Zbl 0834.30011)] showed that $\text{UST}\not\subset \text{ST}(\frac 12)$ and posed the problem of determining the largest $\alpha\geq 0$ such that $\text{UST} \subset \text{ST} (\alpha)$. The author proved that if $\alpha> \alpha_0= 0.1483\dots$, then $\text{UST} \not\subset \text{ST}(\alpha)$. The bound is determined as $\alpha_0= 1-h_0^{-1/2}$, where $h_0= 1.3786\dots$ is the maximum of the function $$h(s,t)= \tfrac 14 \Bigl[1+ st+ \sqrt{(1-s^2) (1-t^2)} \Bigr] \Bigl[1+ st+ \sqrt{(1-t^2) (1+t^2+ 2st)}\Bigr]$$ in the square $0\leq s,t\leq 1$ which is attained for $s_0= 0.9246\dots$, $t_0= 0.7803\dots\ $.
30C45Special classes of univalent and multivalent functions
Full Text: DOI
[1] Goodman, A. W.: On uniformly starlike functions. J. math. Anal. appl. 155, 364-370 (1991) · Zbl 0726.30013
[2] Il’in, V. A.; Sadovnichii, V. A.; Sendov, B. H.: Mathematical analysis. (1985)
[3] Nezhmetdinov, I. R.: Classes of uniformly convex and uniformly starlike functions as dual sets. J. math. Anal. appl. 216, 40-47 (1997) · Zbl 0888.30013
[4] I. R. Nezhmetdinov, Duals and dual hulls of classes of analytic functions, Izv. Vuzov, Mat, to appear. · Zbl 0961.30007
[5] Rønning, F.: Some radius results for univalent functions. J. math. Anal. appl. 194, 319-327 (1995) · Zbl 0834.30011
[6] Ruscheweyh, St.: Duality for Hadamard products with applications to extremal problems for functions regular in the unit disc. Trans. amer. Math. soc. 210, 63-74 (1975) · Zbl 0311.30011
[7] Sakaguchi, K.: On a certain univalent mapping. J. math. Soc. Japan 11, 72-75 (1959) · Zbl 0085.29602
[8] Silverman, H.; Silvia, E. M.; Telage, D.: Convolution conditions for convexity, starlikeness and spiral-likeness. Math. Z. 162, 125-130 (1978) · Zbl 0369.30004