zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Minimal subshifts which display Schweizer-Smítal chaos and have zero topological entropy. (English) Zbl 0931.54034
Summary: A class of minimal subshifts wich display Schweizer-Smítal chaos [{\it B. Schweizer} and {\it J. Smítal}, Trans. Am. Math. Soc. 344, No. 2, 737-754 (1994; Zbl 0812.58062)] and have zero topological entropy is constructed, and it is proved that for a compact system the positive topological entropy is not generally equivalent to Schweizer-Smítal chaos occuring on the measure centre.

54H20Topological dynamics
54C70Topological entropy
37B10Symbolic dynamics
37D45Strange attractors, chaotic dynamics
Full Text: DOI
[1] Li, T. Y., Yorke, J. A., Period three implies chaos,Amer. Math. Monthly, 1975, 82:985. · Zbl 0351.92021 · doi:10.2307/2318254
[2] Schweizer, B., Smital, J., Measures of chaos and a spectral decomposition of dynamical systems of the interval,Trans. Amer. Math. Soc. 1994, 344(2):737. · Zbl 0812.58062 · doi:10.2307/2154504
[3] Schweizer, B., Sklar, A.,Probabilistic Metric Spaces, New York:North-Holland, 1983. · Zbl 0546.60010
[4] Xiong, J. C., A chaotic map with topoiogical entropy 0,Acta Mathematica Scientia, 1986, 6:439.
[5] Liao, G. F., A note on a chaotic map with topoiogical entropy 0,Northeastern Mathematical Journal, 1986, 2:240. · Zbl 0637.58009
[6] Misurewicz, M., Smital, J., Smooth chaotic maps with zero topoiogical entropy,Erg. Th. & Dyn. Sys., 1988, 89:421.
[7] Smítal, J., Chaotic functions with zero topoiogical entropy,Trans. Amer. Math. Soc., 1986, 297:269. · Zbl 0639.54029
[8] Zhou, Z. L., Weakly almost periodic points and measure centre,Science in China, Ser. A, 1993, 36(2):142.
[9] Zhou, Z. L., Liao, G. F., Wang, L. Y., The positive topoiogical entropy not equivalent to chaos--a class of subshifts,Science in China, Ser A, 1994, 37(6):653. · Zbl 0813.54027
[10] Gottschalk, W. H., Some remarks on almost periodic transformations,Bull. Amer. Math. Soc., 1944, 50:915. · Zbl 0063.01709 · doi:10.1090/S0002-9904-1944-08262-1
[11] Erdos, P., Stone, A. H., Orbit-closure decompositions and almost periodic properties.,Bull. Amer. Math. Soc., 1945, 51:126. · Zbl 0063.01276 · doi:10.1090/S0002-9904-1945-08289-5
[12] Walters, P.,An Introduction of Ergodic Theory, New York:Springer-Verlag, 1982. · Zbl 0475.28009