zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Certain classes of series involving the zeta function. (English) Zbl 0932.11054
The authors apply the theory of the double Gamma function, which was recently revived in the study of the determinants of Laplacians, to evaluate some families of series involving the Riemann zeta-function. Introducing a (presumably new) mathematical constant in the theory of the double Gamma function, they also systematically evaluate a definite integral of the double Gamma function and various classes of series associated with Zeta functions. Some of these definite integrals are expressed in terms of quotients of double Gamma functions.

MSC:
11M06$\zeta (s)$ and $L(s, \chi)$
33B99Elementary classical functions
WorldCat.org
Full Text: DOI
References:
[1] Ahlfors, L. V.: Complex analysis. (1979) · Zbl 0395.30001
[2] Alexeiewsky, W.: Über eine classe von funktionen, die der gammafunktion analog sind. Leipzig weidmannsche buchhandluns 46, 268-275 (1894)
[3] Barnes, E. W.: The theory of theg. Quart. J. Math. 31, 264-314 (1899)
[4] Barnes, E. W.: Genesis of the double gamma function. Proc. London math. Soc. 31, 358-381 (1900) · Zbl 30.0389.03
[5] Barnes, E. W.: The theory of the double gamma function. Philos. trans. Roy. soc. London ser. A 196, 265-388 (1901) · Zbl 32.0442.02
[6] Cassou-Noguès, P.: Analoguesp. Colloq. internat. CNRS, centre univ. Luminy, luminy, 1978 (1979)
[7] Choi, J.: Determinant of Laplacian ons3. Math. japon. 40, 155-166 (1994) · Zbl 0806.58053
[8] Choi, J.: A duplication formula for the double gamma function ${\Gamma}$2. Bull. korean math. Soc. 33, 289-294 (1996) · Zbl 0859.33002
[9] Choi, J.; Srivastava, H. M.: Sums associated with the zeta function. J. math. Anal. appl. 206, 103-120 (1997) · Zbl 0869.11067
[10] Choi, J.; Srivastava, H. M.; Quine, J. R.: Some series involving the zeta function. Bull. austral. Math. soc. 51, 383-393 (1995) · Zbl 0830.11030
[11] De Lillo, N. J.: Advanced calculus with applications. (1982) · Zbl 0484.26004
[12] Edwards, J.: A trestise on the integral calculus with applications, examples and problems. (1954)
[13] Gradshteyn, I. S.; Ryzhik, I. M.: Tables of integrals, series, and products. (1980) · Zbl 0521.33001
[14] Hölder, V. O.: Über eine transcendente funktion. (1886)
[15] Ivić, A.: The Riemann zeta-function. (1985) · Zbl 0556.10026
[16] Kinkelin, V. H.: Über eine mit der gamma funktion verwandte transcendente und deren anwendung auf die integralrechnung. J. reine angew. Math. 57, 122-158 (1860) · Zbl 057.1509cj
[17] Magnus, W.; Oberhettinger, F.; Soni, R. P.: Formulas and theorems for the special functions of mathematical physics. (1966) · Zbl 0143.08502
[18] Matsumoto, K.: Asymptotic series for double zeta, double gamma, and heckel. Math. proc. Cambridge philos. Soc. 123, 385-405 (1998) · Zbl 0903.11021
[19] Osgood, B.; Phillips, R.; Sarnak, P.: Extremals of determinants of Laplacians. J. funct. Anal. 80, 148-211 (1988) · Zbl 0653.53022
[20] Quine, J. R.; Choi, J.: Zeta regularized products and functional determinants on spheres. Rocky mountain J. Math. 26, 719-729 (1996) · Zbl 0864.47024
[21] Shintani, T.: A proof of the classical Kronecker limit formula. Tokyo J. Math. 3, 191-199 (1980) · Zbl 0462.10014
[22] Spiegel, M. R.: Mathematical handbook. (1968)
[23] Srivastava, H. M.: A unified presentation of certain classes of series of the Riemann zeta function. Riv. mat. Univ. parma (4) 14, 1-23 (1988) · Zbl 0659.10047
[24] Titchmarsh, E. C.: The theory of the Riemann zeta-function. (1951) · Zbl 0042.07901
[25] Vardi, I.: Determinants of Laplacians and multiple gamma functions. SIAM J. Math. anal. 19, 493-507 (1988) · Zbl 0641.33003
[26] Voros, A.: Special functions, spectral functions and the Selberg zeta function. Comm. math. Phys. 110, 439-465 (1987) · Zbl 0631.10025
[27] Whittaker, E. T.; Watson, G. N.: A course of modern analysis. (1963) · Zbl 0108.26903