zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Invariance of a partial differential equation of fractional order under the Lie group of scaling transformations. (English) Zbl 0932.58038
For $\alpha \ge 1$, $D > 0$, the authors consider the linear fractional order differential equation $\partial^\alpha u/\partial t^\alpha = D \partial^2 u/\partial x^2$, in the sense of the Riemann-Liouville fractional calculus. Similarity solutions with respect to the scaling transformations are found to be functions of the invariant $z = x t^{-\alpha/2}$. For them an ordinary differential equation in the Erdelyi-Kober derivative is obtained. As the final result, the general scale-invariant solution is computed in terms of Wright and generalized Wright functions.

58J72Correspondences and other transformation methods (PDE on manifolds)
26A33Fractional derivatives and integrals (real functions)
Full Text: DOI
[1] Engler, H.: Similarity solutions for a class of hyperbolic integrodifferential equations. Differential integral equations 10, 815-840 (1997) · Zbl 0892.45005
[2] Fujita, Y.: Integrodifferential equation which interpolates the heat and the wave equations. Osaka J. Math. 27, 309-321 (1990) · Zbl 0790.45009
[3] Grigoriev, Yu.N.; Meleshko, S. V.: Group analysis of kinetic equations. Russian J. Numer. anal. Math. modeling 10, 425-447 (1995) · Zbl 0838.35101
[4] Ibragimov, N. H.: Symmetries, exact solutions and conservation laws. (1994) · Zbl 0864.35001
[5] Ibragimov, N. H.: Applications in engineering and physical sciences. (1995) · Zbl 0864.35002
[6] Ibragimov, N. H.: New trends in theoretical developments and computational methods. (1996) · Zbl 0864.35003
[7] Kiryakova, V.: Generalized fractional calculus and applications. Pitman res. Notes in math. 301 (1994) · Zbl 0882.26003
[8] Logan, J. D.: An introduction to nonlinear partial differential equations. (1994) · Zbl 0834.35001
[9] Luchko, Yu.F.; Yakubovich, S. B.: Operational method of solution of some classes of integro-differential equations. Differentsial’nye uravneniya 30, 269-280 (1994) · Zbl 0827.44004
[10] Mainardi, F.: Fractional relaxation-oscillation and fractional diffusion-wave phenomena. Chaos solitons fractals 7, 1461-1477 (1996) · Zbl 1080.26505
[11] Mainardi, F.: The fundamental solutions for the fractional diffusion-wave equation. Appl. math. Lett. 9, 23-28 (1996) · Zbl 0879.35036
[12] Mainardi, F.: Fractional calculus: some basic problems in continuum and statistical mechanics. Fractals and fractional calculus in continuum mechanics, 291-348 (1997) · Zbl 0917.73004
[13] Marichev, O. I.: Handbook of integral transforms of higher transcendental functions, theory and algorithmic tables. (1983) · Zbl 0494.33001
[14] Olver, P. J.: Applications of Lie groups to differential equations. (1986) · Zbl 0588.22001
[15] Srivastava, H. M.; Gupta, K. C.; Goyal, S. P.: The H-functions of one and two variables with applications. (1982) · Zbl 0506.33007
[16] Prüss, J.: Evolutionary integral equations and applications. (1993) · Zbl 0784.45006
[17] Saichev, A.; Zaslavsky, G.: Fractional kinetic equations: solutions and applications. Chaos 7, 753-764 (1997) · Zbl 0933.37029
[18] Schneider, W. R.; Wyss, W.: Fractional diffusion and wave equations. J. math. Phys. 30, 134-144 (1989) · Zbl 0692.45004
[19] Wright, E. M.: The generalized Bessel functions of order greater than one. Quart. J. Math. Oxford ser. (2) 11, 36-48 (1940) · Zbl 0023.14101
[20] Wyss, W.: Fractional diffusion equation. J. math. Phys. 27, 2782-2785 (1986) · Zbl 0632.35031
[21] Yakubovich, S. B.; Luchko, Yu.F.: The hypergeometric approach to integral transforms and convolutions. (1994) · Zbl 0803.44001