zbMATH — the first resource for mathematics

Efficient estimation from right-censored data when failure indicators are missing at random. (English) Zbl 0932.62040
Summary: The Kaplan-Meier estimator of a survival function is well known to be asymptotically efficient when cause of failure is always observed. It has been an open problem, however, to find an efficient estimator when failure indicators are missing at random. S. H. Lo [J. Multivariate Anal. 39, No. 2, 217-235 (1991; Zbl 0741.62038)] showed that nonparametric maximum likelihood estimators are inconsistent and this has led to several proposals of ad hoc estimators, none of which are efficient.
We now introduce a sieved nonparametric maximum likelihood estimator, and show that it is efficient. Our approach is related to the estimation of a bivariate survival function from bivariate right-censored data.

62G05 Nonparametric estimation
62N01 Censored data models
62N02 Estimation in survival analysis and censored data
62F12 Asymptotic properties of parametric estimators
62P10 Applications of statistics to biology and medical sciences; meta analysis
Full Text: DOI
[1] Bickel, P. J., Klaassen, C. A. J., Ritov, Y. and Wellner, J. A. (1993). Efficient and Adaptive Estimation for Semiparametric Models. Johns Hopkins Univ. Press. · Zbl 0786.62001
[2] Bijlsma, F. (1994). Mortality among young people: causes and background. Nederl. Tijdschr. Geneeskd. 138 2439-2443. (In Dutch.)
[3] Dinse, G. E. (1982). Nonparametric estimation for partially-complete time and ty pe of failure data. Biometrics 38 417-431.
[4] Efron, B. (1967). The two sample problem with censored data. Proc. Fifth Berkeley Sy mp. Math. Statist. Probab. 4 831-853.
[5] Gijbels, I., Lin, D. Y. and Ying, Z. (1993). Nonand semi-parametric analysis of failure time data with missing failure indicators.
[6] Gill, R. D. (1989). Nonand semi-parametric maximum likelihood estimators and the von Mises method (part 1). Scand. J. Statist. 16 97-124. · Zbl 0688.62026
[7] Gill, R. D. and Johansen, S. (1990). A survey of product-integration with a view toward application in survival analysis. Ann. Statist. 18 1501-1555. · Zbl 0718.60087
[8] Gill, R. D., van der Laan, M. J. and Robins, J. M. (1997). Coarsening at random. In Proceedings of the First Seattle Sy mposium on Biostatistics (D.-Y. Lin, ed.). Springer, New York. · Zbl 0918.62003
[9] Gill, R. D., van der Laan, M. J. and Wellner, J. A. (1995). Inefficient estimators of the bivariate survival function for three models. Ann. Inst. H. Poincaré Probab. Statist. 31 545-597. · Zbl 0855.62024
[10] Heitjan, D. F. and Rubin, D. B. (1991). Ignorability and coarse data. Ann. Statist. 19 2244-2253. · Zbl 0745.62004
[11] Jacobsen, M. and Keiding, N. (1995). Coarsening at random in general sample spaces and random censoring in continuous time. Ann. Statist. 23 774-786. · Zbl 0839.62001
[12] Kaplan, E. L. and Meier, P. (1958). Nonparametric estimation from incomplete observations. J. Amer. Statist. Assoc. 53 457-481. JSTOR: · Zbl 0089.14801
[13] Lapidus, G., Braddock, M., Schwartz, R., Banco, L. and Jacobs, L. (1994). Accuracy of fatal motorcy cle-injury reporting on death certificates. Accid. Anal. Prev. 26 535-542.
[14] Little, R. J. A. and Rubin, D. B. (1987). Statistical Analy sis with Missing Data. Wiley, New York. · Zbl 0665.62004
[15] Lo, S.-H. (1991). Estimating a survival function with incomplete cause-of-death data. J. Multivariate Anal. 39 217-235. · Zbl 0741.62038
[16] McKeague, I. W. and Subramanian, S. (1996). Product-limit estimators and Cox regression with missing censoring information. Scand. J. Statist. · Zbl 0927.62103
[17] Newey, W. K. (1990). Semiparametric efficiency bounds. J. Appl. Econometrics 5 99-135. · Zbl 0705.62033
[18] O’Sullivan, F. (1986). A statistical perspective on ill-posed inverse problems. Statist. Sci. 1 502-527. · Zbl 0955.65500
[19] Pruitt, R. C. (1991). On negative mass assigned by the bivariate Kaplan-Meier estimator. Ann. Statist. 19 443-453. · Zbl 0738.62049
[20] Robins, J. M. and Ritov, Y. (1997). Toward a curse of dimensionality appropriate (CODA) asy mptotic theory for semi-parametric models. Statistics in Medicine 16 285-319.
[21] Robins, J. M. and Rotnitzky, A. (1992). Recovery of information and adjustment for dependent censoring using surrogate markers. In AIDS Epidemiology-Methodological Issues (N. Jewell, K. Dietz and V. Farewell, eds.) 279-331. Birkhäuser, Boston.
[22] Rubin, D. B. (1976). Inference and missing data. Biometrika 63 581-590. JSTOR: · Zbl 0344.62034
[23] van der Laan, M. J. (1996a). Efficient and inefficient estimation in semiparametric models. CWI Tract 114. Centre of Computer Science and Mathematics, Amsterdam. · Zbl 1137.91532
[24] van der Laan, M. J. (1996b). Efficient estimation in the bivariate censoring model and repairing NPMLE. Ann. Statist. 24 596-627. · Zbl 1137.91532
[25] van der Vaart, A. W. (1991). Efficiency and Hadamard differentiable functionals. Scand. J. Statist. 18 63-75. · Zbl 0753.62029
[26] Wellner, J. A. (1982). Asy mptotic optimality of the product limit estimator. Ann. Statist. 10 595-602. · Zbl 0489.62036
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.