×

Convergence and accuracy of Gibbs sampling for conditional distributions in generalized linear models. (English) Zbl 0932.62078

Summary: This paper presents convergence conditions for a Markov chain constructed using Gibbs sampling, when the equilibrium distribution is the conditional sampling distribution of sufficient statistics from a generalized linear model. For cases when this unidimensional sampling is done approximately rather than exactly, the difference between the target equilibrium distribution and the resulting equilibrium distribution is expressed in terms of the difference between the true and approximating univariate conditional distributions. These methods are applied to an algorithm facilitating approximate conditional inference in canonical exponential families.

MSC:

62J12 Generalized linear models (logistic models)
65C40 Numerical analysis or methods applied to Markov chains
62E20 Asymptotic distribution theory in statistics
Full Text: DOI

References:

[1] DIACONIS, P. and STURMFELS, B. 1998. Algebraic algorithms for sampling from conditional distributions. Ann. Statist. 26 363 397. Z. · Zbl 0952.62088 · doi:10.1214/aos/1030563990
[2] FORSTER, J. J., MCDONALD, J. W. and SMITH, P. W. F. 1996. Monte Carlo exact conditional tests for log-linear and logistic models. J. Roy. Statist. Soc. Ser. B 58 445 453. Z. JSTOR: · Zbl 0853.62050
[3] GELMAN, A. and RUBIN, D. B. 1992. Inference from iterative simulation using multiple sequences. Statist. Sci. 7 457 472. Z. · Zbl 1386.65060
[4] GEMAN, S. and GEMAN, D. 1984. Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 6 721 741. Z. · Zbl 0573.62030 · doi:10.1109/TPAMI.1984.4767596
[5] GEYER, C. J. 1992. Practical Markov chain Monte Carlo. Statist. Sci. 7 473 483. Z.
[6] HIRJI, K. F., MEHTA, C. R. and PATEL, N. R. 1987. Computing distributions for exact logistic regression. J. Amer. Statist. Assoc. 82 1110 1117. Z. JSTOR: · Zbl 0648.62054 · doi:10.2307/2289388
[7] JENSEN, J. L. 1992. The modified signed likelihood statistic and saddlepoint approximations. Biometrika 79 693 703. Z. JSTOR: · Zbl 0764.62021 · doi:10.1093/biomet/79.4.693
[8] KOLASSA, J. E. 1998a. Uniformity of double saddlepoint conditional probability approximations. J. Multivariate Anal. 64 66 85. Z. · Zbl 0960.62070 · doi:10.1016/S0167-7152(00)00101-2
[9] KOLASSA, J. E. 1998b. Bounding the difference between two saddlepoint distribution function approximations. Technical Report 98-04, Dept. Biostatistics, Univ. Rochester. Z. · Zbl 0960.62070 · doi:10.1016/S0167-7152(00)00101-2
[10] KOLASSA, J. E. and TANNER, M. A. 1994. Approximate conditional inference in exponential families via the Gibbs sampler. J. Amer. Statist. Assoc. 89 697 702. Z. · Zbl 0803.62013 · doi:10.2307/2290874
[11] LUGANNANI, R. and RICE, S. 1980. Saddle point approximation for the distribution of the sum of independent random variables. Adv. Appl. Probab. 12 475 490. Z. JSTOR: · Zbl 0425.60042 · doi:10.2307/1426607
[12] MEHTA, C. R., PATEL, N. R. and SENCHAUDHURI, P. 1993. Monte Carlo methods for conditional logistic regression. In Computer Science Statistics. Proceedings of the 25th Symposium Z. on the Interface Michael E. Tarter and Michael D. Lock, eds. 25 385 391. Interface Foundation of North America, Fairfax Station, VA. Z.
[13] NUMMELIN, E. 1984. General Irreducible Markov Chains and Non-Negative Operators. Cambridge Univ. Press. Z. · Zbl 0551.60066
[14] ROBERTS, G. O. and POLSON, N. G. 1994. On the geometric convergence of the Gibbs sampler. J. Roy. Statist. Soc. Ser. B 56 377 384. Z. JSTOR: · Zbl 0796.62029
[15] ROBERTS, G. O. and SMITH, A. F. M. 1994. Simple conditions for the convergence of the Gibbs sampler and Metropolis Hastings algorithms. Stochastic Process. Appl. 49 207 216. · Zbl 0803.60067 · doi:10.1016/0304-4149(94)90134-1
[16] ROSENTHAL, J. S. 1995. Minorization conditions and convergence rates for Markov chain Monte Carlo. J. Amer. Statist. Assoc. 90 558 566. Z. · Zbl 0824.60077 · doi:10.2307/2291067
[17] ROUTLEDGE, R. and TSAO, M. 1997. On the relationship between two asymptotic expansions for the distribution of sample mean and its applications. Ann. Statist. 25 2200 2209. Z. · Zbl 0942.62022 · doi:10.1214/aos/1069362394
[18] SCHERVISH, M. J. and CARLIN, B. P. 1992. On the convergence of successive substitution sampling. J. Comput. Graph. Statist. 1 111 127. Z. JSTOR: · doi:10.2307/1390836
[19] SKOVGAARD, I. M. 1987. Saddlepoint expansions for conditional distributions. J. Appl. Probab. 24 875 887. Z. JSTOR: · Zbl 0638.62018 · doi:10.2307/3214212
[20] TANNER, M. A. 1996. Tools for Statistical Inference. Springer, Berlin. Z. · Zbl 0846.62001
[21] TANNER, M. A. and WONG, W. H. 1987. The calculation of posterior distributions by data Z. augmentation with discussion. J. Amer. Statist. Assoc. 82 528 550. Z. JSTOR: · Zbl 0619.62029 · doi:10.2307/2289457
[22] TIERNEY, L. 1994. Markov chains for exploring posterior distributions. Ann. Statist. 22 1701 1762. · Zbl 0829.62080 · doi:10.1214/aos/1176325750
[23] ROCHESTER, NEW YORK 14642 E-MAIL: kolassa@bio1.bst.rochester.edu
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.