zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Hadamard inverses, square roots and products of almost semidefinite matrices. (English) Zbl 0933.15006
Hadamard products, inverses, and square roots of $n\times n$ symmetric matrices $A,B$ with all positive entries, having just one positive eigenvalue, are studied. The result by {\it R. B. Bapat} [Proc. Am. Math. Soc. 102, No. 3, 467-472 (1988; Zbl 0647.60019)] on positive semidefiniteness of the Hadamard inverses $A^{0(-1)}$ is extended. It is shown that if $A$ is invertible then $A^{0(-1)}$ is positive definite. Necessary and sufficient conditions are given on the invertibility of $A^{0(-1)}$. The Hadamard square root has just one positive eigenvalue and is invertible if $A$ is a symmetric matrix, with all diagonal entries zero. An inequality is derived for $A\circ B$.

15A09Matrix inversion, generalized inverses
15A18Eigenvalues, singular values, and eigenvectors
15A45Miscellaneous inequalities involving matrices
Full Text: DOI
[1] Auer, J. W.: An elementary proof of the invertibility of distance matrices. Linear and multilinear algebra 40, 119-124 (1995) · Zbl 0843.15011
[2] Bapat, R. B.: Multinomial probabilities, permanents and a conjecture of Karlin and rinott. Proc. amer. Math. soc. 102, 467-472 (1988) · Zbl 0647.60019
[3] Bapat, R. B.; Raghavan, T. E. S.: Nonnegative matrices and applications. Encyclopedia of mathematics and its applications, no. 64 (1997) · Zbl 0879.15015
[4] Blumenthal, L. M.: Theory and applications of distance geometry. (1953) · Zbl 0050.38502
[5] Critchle, F.; Fichet, B.: The partial order by inclusion of the principal classes of dissimilarity on a finite set. Lecture notes in statistics, 5-65 (1994) · Zbl 0847.62048
[6] Crouzeix, J. P.; Ferland, J.: Criteria for quasiconvexity and pseudoconvexity: relationships and comparisons. Mathematical programming 23, No. 2, 193-205 (1982) · Zbl 0479.90067
[7] Donoghue, W. F.: Monotone matrix functions and analytic continuation. (1974) · Zbl 0278.30004
[8] Ferland, J. A.: Matrix-theoretic criteria for the quasiconvexity of twice continuously differentiable functions. Linear algebra and its applications 38, 51-63 (1981) · Zbl 0468.15008
[9] Fiedler, M.; Markham, T. L.: An observation on the Hadamard product of Hermitian matrices. Linear algebra and its applications 215, 179-182 (1995) · Zbl 0824.15024
[10] Gower, J. C.: Euclidean distance geometry. Math. scientist 7, 1-14 (1982) · Zbl 0492.51017
[11] Horn, R. A.: The Hadamard product. Proc. appl. Math. 40, 87-169 (1990) · Zbl 0712.15011
[12] Horn, R. A.; Johnson, C. R.: Matrix analysis. (1985) · Zbl 0576.15001
[13] Horn, R. A.; Johnson, C. R.: Topics in matrix analysis. (1991) · Zbl 0729.15001
[14] Kelly, J. B.: Hypermetric spaces and metric transforms. Inequalities III, 149-158 (1972) · Zbl 0294.52011
[15] Lancaster, P.; Tismenetsky, M.: The theory of matrices, with applications. (1985) · Zbl 0558.15001
[16] Marcus, M.; Smith, T. R.: A note on the determinants and eigenvalues of distance matrices. Linear and multilinear algebra 25, 219-230 (1989) · Zbl 0681.15009
[17] Micchelli, C. A.: Interpolation of scattered data: distance matrices and conditionally positive definite functions. Constr. approx. 2, 11-22 (1986) · Zbl 0625.41005
[18] Schoenberg, I. J.: On certain metric spaces arising from Euclidean space by a change of metric and their embedding in Hilbert space. Ann. of math. 38, No. 4, 787-793 (1937) · Zbl 0017.36101
[19] Schoenberg, I. J.: Metric spaces and positive definite functions. Trans. amer. Math. soc. 44, 522-536 (1938) · Zbl 0019.41502
[20] Tarazaga, P.; Hayden, T. L.; Wells, J.: Circum-Euclidean distance matrices and faces. Linear algebra and its applications 232, 77-96 (1996) · Zbl 0837.15014