×

Wavefront propagation for reaction-diffusion systems and backward SDEs. (English) Zbl 0933.35098

Summary: We first show a large deviation principle for degenerate diffusion-transmutation processes and study the Riemannian metric associated with the action functional under a Hörmander-type assumption. Then we study the behavior of the solution \(u^\varepsilon\) of a system of strongly coupled scaled KPP equations. Using backward stochastic differential equations and the theory of Hamilton-Jacobi equations, we show that, when the parabolic operator satisfies a Hörmander-type hypothesis or when the nonlinearity depends on the gradient, the wavefront location is given by the same formula as that in Freidlin and Lee or Barles, Evans and Souganidis. We obtain the exact logarithmic rates of convergence to the unstable equilibrium state in the general case and to the stable equilibrium state when the equations are uniformly positively coupled.

MSC:

35K57 Reaction-diffusion equations
35K65 Degenerate parabolic equations
49L25 Viscosity solutions to Hamilton-Jacobi equations in optimal control and differential games
60F10 Large deviations
60H30 Applications of stochastic analysis (to PDEs, etc.)
Full Text: DOI

References:

[1] ARONSON, D. G. and WEINBERGER, H. F. 1978. Multidimensional nonlinear diffusion arising in population genetics. Adv. Math. 30 33 76. · Zbl 0407.92014 · doi:10.1016/0001-8708(78)90130-5
[2] AZENCOTT, R. 1980. Ecole d’ete de Probabilites de St. Flour. Lecture Notes in Math. 774. \' \' Śpringer, Berlin.
[3] BARLES, G. 1994. Solutions de viscosite des equations de Hamilton Jacobi. Math. Appl. 17. \' \'
[4] BARLES, G. and SOUGANIDIS, P. E. 1994. A remark on the asymptotic behavior of the solution of the KPP equation. C. R. Acad. Sci. Paris Ser. I 319 679 684. \' · Zbl 0807.60076
[5] BARLES, G., EVANS, L. C. and SOUGANIDIS, P. E. 1990. Wavefront propagation for reaction diffusion systems of PDE. Duke Math. J. 61 835 858. · Zbl 0749.35015 · doi:10.1215/S0012-7094-90-06132-0
[6] CHAMPNEYS, A., HARRIS, S., TOLAND, J., WARREN, J. and WILLIAMS, D. 1995. Algebra, analysis and probability for a coupled system of reaction diffusion equations. Philos. Trans. Roy. Soc. London 305 69 112. JSTOR: · Zbl 0824.60070 · doi:10.1098/rsta.1995.0003
[7] ELWORTHY, K. D., TRUMAN, A., ZHAO, H.and GAINES, J. G. 1994. Approximate traveling waves for generalized KPP equations and classical mechanics. Proc. Roy. Soc. London Ser. A 446 529 554. · Zbl 0812.35123 · doi:10.1098/rspa.1994.0119
[8] EVANS, L. C. and SOUGANIDIS, P. E. 1989. A P.D.E. approach to geometric optics for certain semilinear parabolic equations. Indiana Univ. Math. J. 38 141 172. · Zbl 0692.35014 · doi:10.1512/iumj.1989.38.38007
[9] EVANS, L. C. and SOUGANIDIS, P. E. 1989. A PDE approach to certain large deviation problems for systems of parabolic equations. Ann. Inst. H. Poincare Anal. Non Ĺineaire 6 229 258. · Zbl 0679.60040
[10] FREIDLIN, M. I. 1985. Limit theorems for large deviations and reaction diffusion equations. Ann. Probab. 13 639 675. · Zbl 0576.60070 · doi:10.1214/aop/1176992901
[11] FREIDLIN, M. I. 1990. Ecole d’ete de Probabilites de St. Flour. Lecture Notes in Math. 1527. \' \' \' Śpringer, Berlin.
[12] FREIDLIN, M. I. 1991. Coupled reaction diffusion equations. Ann. Probab. 19 29 57. · Zbl 0724.60086 · doi:10.1214/aop/1176990535
[13] FREIDLIN, M. I. and LEE, T. Y. 1992. Large deviation principle for the diffusion transmutation processes and Dirichlet problem for PDE systems with small parameter. Probab. Theory Related Fields. · Zbl 0847.60020 · doi:10.1007/BF01203836
[14] FREIDLIN, M. I. and LEE, T. Y. 1992. Wave front propagation and large deviations for diffusion transmutation process. Probab. Theory Related Fields. · Zbl 0855.60075 · doi:10.1007/s004400050057
[15] FREIDLIN, M. I. and WENTZEL, A. D. 1984. Random perturbations of dynamical systems. Grundlehren Math. Wiss. 260. · Zbl 0522.60055
[16] KOLMOGOROV, A., PETROVSKII, I. and PISKUNOV, N. 1937. Etude de l’equation de la diffusion ávec croissance de la matiere et son application a un probleme biologique. Moscow Univ. Bull. Math. 1 1 25. · Zbl 0018.32106
[17] LEANDRE, R. 1987. Minoration en temps petit de la densite d’une diffusion degeneree. \' \' \' \' \' \' J. Funct. Anal. 74 399 414. · Zbl 0637.58034 · doi:10.1016/0022-1236(87)90031-0
[18] LEANDRE, R. 1987. Integration dans la fibre associee a une diffusion degeneree. Probab. \' \' \' \' \' \' \' Theory Related Fields 76 341 358. · Zbl 0611.60051 · doi:10.1007/BF01297490
[19] MCKEAN, H. 1975. Application of Brownian motion to the equations of Kolmogorov Petrovskii Piskunov. Comm. Pure Appl. Math. 28 323 331. · Zbl 0316.35053 · doi:10.1002/cpa.3160280302
[20] MCKEAN, H. 1975. A correction to: Application of Brownian motion to the equations of Kolmogorov Petrovskii Piskunov. Comm. Pure Appl. Math. 29 553 554. · Zbl 0316.35053 · doi:10.1002/cpa.3160280302
[21] PARDOUX, E. and PENG, S. 1992. Backward stochastic differential equations and quasilinear parabolic differential equations. Stochastic Partial Differential Equations and Their Applications. Lecture Notes in Control and Inform. Sci. 176. Springer, Berlin. · Zbl 0766.60079 · doi:10.1007/BFb0007334
[22] PARDOUX, E., PRADEILLES, F. and RAO,1997. Probabilistic interpretation for a system of nonlinear parabolic PDE’s. Ann. Inst. H. Poincare Probab. Statist. 33 467 490. \'
[23] PRADEILLES, F. 1995. Une methode probabiliste pour l’etude des equations et systemes \' \' \' d’equation de reaction diffusion. Ph.D. thesis. \' \'
[24] PRIOURET, P. 1973. Ecole d’ete de Probabilites de St. Flour. Lecture Notes in Math. 390. \' \' Śpringer, Berlin.
[25] PRIOURET, P. 1982. Remarques sur les petites perturbations de systemes dynamiques. Seminaire de Probabilites XVI. Lecture Notes in Math. 920. Springer, Berlin. \' \' · Zbl 0484.60021
[26] SMOLLER, J. 1983. Shock waves and reaction diffusion equations. Grundlehren Math. Wiss. 258. · Zbl 0508.35002
[27] ZHAO, H. 1994. The travelling wave fronts of nonlinear reaction diffusion systems via Freidlin’s stochastic approaches. Proc. Roy. Soc. Edinburgh Sect. A 124 273 299. · Zbl 0803.35075 · doi:10.1017/S030821050002847X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.