zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A generalization of the Hyers-Ulam-Rassias stability of Jensen’s equation. (English) Zbl 0933.39053
The following generalization of the stability of the Jensen’s equation in the spirit of Hyers-Ulam-Rassias is proved: Let $V$ be a normed space, $X$ -- a Banach space, $p<1$ and $0\leq a<3$. If $f:V\rightarrow X$ satisfies $$\left\|2f\left({x+y\over 2}\right)-f(x)-f(y)\right\|\leq \|x\|^p+\|y\|^p$$ for all $x,y\in V$ with $\|x\|,\|y\|>a$, then there exists a unique additive mapping $T:V\rightarrow X$ such that $$\left\|f(x)-T(x)-f(0)\right\|\leq {3+3^p\over 3-3^p}\|x\|^p$$ for all $x\in V$ with $\|x\|>a$. For the case $p>1$ a corresponding result is obtained.

39B82Stability, separation, extension, and related topics
39B62Functional inequalities, including subadditivity, convexity, etc. (functional equations)
39B52Functional equations for functions with more general domains and/or ranges
Full Text: DOI
[1] Găvruta, P.: A generalization of the Hyers--Ulam--rassias stability of approximately additive mappings. J. math. Anal. appl. 184, 431-436 (1994) · Zbl 0818.46043
[2] Hyers, D. H.: On the stability of the linear functional equation. Proc. nat. Acad. sci. USA 27, 222-224 (1941) · Zbl 0061.26403
[3] Hyers, D. H.; Isac, G.; Rassias, T. M.: Stability of functional equations in several variables. (1998) · Zbl 0907.39025
[4] Isac, G.; Rassias, T. M.: On the Hyers--Ulam stability of ${\psi}$-additive mappings. J. approx. Theory 72, 131-137 (1993) · Zbl 0770.41018
[5] Jung, S. -M.: On the Hyers--Ulam--rassias stability of approximately additive mappings. J. math. Anal. appl. 204, 221-226 (1996) · Zbl 0888.46018
[6] Jung, S. -M.: Hyers--Ulam--rassias stability of Jensen’s equation and its application. Proc. amer. Math. soc. 126, 3137-3143 (1998) · Zbl 0909.39014
[7] Y. H. Lee, and, K. W. Jun, On the stability of approximately additive mappings, Proc. Amer. Math. Soc, to appear. · Zbl 0961.47039
[8] Parnami, J. C.; Vasudeva, H. L.: On Jensen’s functional equation. Aequationes math. 43, 211-218 (1992) · Zbl 0755.39008
[9] Rassias, T. M.: On the stability of the linear mapping in Banach spaces. Proc. amer. Math. soc. 72, 297-300 (1978) · Zbl 0398.47040
[10] Rassias, T. M.; S\breve{}emrl, P.: On the behavior of mappings which does not satisfy Hyers--Ulam stability. Proc. amer. Math. soc. 114, 989-993 (1992) · Zbl 0761.47004
[11] Ulam, S. M.: Problems in modern mathematics. (1960) · Zbl 0086.24101